retinoic acid resistance
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 5)

H-INDEX

13
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Mathilde Poplineau ◽  
Nadine Platet ◽  
Adrien Mazuel ◽  
Leonard Herault ◽  
Shuhei Koide ◽  
...  

Cancer relapse is caused by a subset of malignant cells that are resistant to treatment. To characterize resistant cells and their vulnerabilities, we studied the retinoic acid (RA)-resistant PLZF-RARA acute promyelocytic leukemia (APL) using single-cell multi-omics. We uncovered transcriptional and chromatin heterogeneity in leukemia cells and identified a subset of cells resistant to RA that depend on a fine-tuned transcriptional network targeting the epigenetic regulator Enhancer of Zeste Homolog 2 (EZH2). Epigenomic and functional analyses validated EZH2 selective dependency of PLZF-RARA leukemia and its driver role in RA resistance. Targeting pan-EZH2 activities (canonical/non-canonical) was necessary to eliminate leukemia relapse initiating cells, which underlies a dependency of resistant cells on an EZH2 non-canonical activity and the necessity to degrade EZH2 to overcome resistance. Our study provides critical insights into the mechanisms of RA resistance that allow us to eliminate treatment-resistant leukemia cells by targeting EZH2, thus highlighting a potential targeted therapy approach.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2205-2205
Author(s):  
Mathilde Poplineau ◽  
Nadine Platet ◽  
Adrien Mazuel ◽  
Léonard Hérault ◽  
Shuhei Koide ◽  
...  

Abstract Resistance to treatment is due to the heterogeneity of the tumor which contains a subset of cancer cells that escape treatment and are responsible for the relapse. Acute Promyelocytic Leukemia (APL), the M3 subtype of AML, is a good model to illustrate these problematics. Indeed, APL driven by oncogenic fusion proteins such PML/RARA t(15;17) or PLZF/RARA t(11;17) behave differently to differentiation therapeutics. Both APLs differentiate in vivo upon Retinoic Acid (RA) treatment; however, while PML/RARA APL patients exhibit partial or complete remission, PLZF/RARA APL patients remain clinically resistant. In the present study we aim to decipher the transcriptional and epigenetic networks that is linked to t(11;17) APL resistance towards RA. We took advantage of the PLZF/RARA RA resistant murine APL model to catch relapse-initiating cell features and their vulnerabilities. By developing an integrative single-cell multi-omics analysis (scRNA-seq and scATAC-seq), we uncovered transcriptional and chromatin heterogeneity of the PLZF/RARA APL blasts. We highlighted a subset of cells insensitive to RA-induced differentiation with a strong DNA repair signature ("Rep" cluster) and exhibiting a fine tuned transcriptional network targeting the histone methyltransferase Ezh2. To validate the function of Ezh2 in APL physiology, we combined epigenomic studies with RA-treated and non-RA-treated bone marrow transplantation experiments. We revealed high Ezh2 activity that marks the relapse of RA-treated APL. However, targeting Ezh2 methyltransferase activity was not sufficient to achieve disease cure and, suggests an independent methyltransferase Ezh2 activity linked to RA resistance. These findings demonstrate the power of single-cell multi-omics integration to highlight path to sensitize therapy-resistant leukemia cells. In addition, our study uncovers a dual role of Ezh2 in APL and suggests that targeting non-canonical Ezh2 activity could be a new promising therapeutic approach for RA resistant APL. Disclosures Iwama: Nissan Chemical Corporation: Research Funding.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Virginia Rodriguez ◽  
Rolanda Bailey ◽  
Mioara Larion ◽  
Mark R. Gilbert

Abstract Resistance to therapeutic use of retinoids in glioma has been observed for over 20 years; however, the exact mechanism of resistance remains unknown. To understand retinoic acid resistance in glioma, we studied the turnover mechanism of retinoid receptor proteins in neural stem cells and glioma stem-like cells. Here, we show that in normal neural stem cells, proteasomal degradation of retinoid receptors involves sumoylation, ubiquitination and recognition by the valosin-containing protein (VCP/p97/Cdc48). We find that Sumo1 modification has a dual role to stabilize the retinoid receptor from unwanted degradation and signal additional modification via ubiquitination. Subsequently, the modified receptor binds to the VCP chaperone and both proteins are degraded by the proteasome. Additionally, we reveal that all trans retinoic acid (ATRA) induces VCP expression, creating a positive feedback loop that enhances degradation. In contrast, the pathway is impaired in the glioma stem-like cells resulting in the accumulation of sumoylated and high molecular weight forms of retinoid receptors that lack transcriptional activity and fail to be recognized by the proteasome. Moreover, modified receptor accumulation occurs before ATRA treatment; therefore, the transcritptional defect in glioma is due to a block in the proteasomal degradation pathway that occurs after the sumo modification step.


PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0204850 ◽  
Author(s):  
Hikaru Hattori ◽  
Yuichi Ishikawa ◽  
Naomi Kawashima ◽  
Akimi Akashi ◽  
Yohei Yamaguchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document