h ii regions
Recently Published Documents


TOTAL DOCUMENTS

1281
(FIVE YEARS 138)

H-INDEX

81
(FIVE YEARS 7)

2022 ◽  
Vol 258 (1) ◽  
pp. 19
Author(s):  
Shi-Min Song ◽  
Xi Chen ◽  
Zhi-Qiang Shen ◽  
Bin Li ◽  
Kai Yang ◽  
...  

Abstract We report a new survey of the 12.2 GHz Class II methanol masers toward a sample of 367 sources with the 6.7 GHz methanol masers conducted with the Shanghai 65 m Tianma Radio Telescope. This sample has been previously made with observations of the radio continuum emission of UC H ii regions by the VLA. A total of 176 sources were detected with the 12.2 GHz methanol maser, with a detection rate of 48%, including 8 new detections. A lower detection rate (<10%) was determined toward the sources in the Galactic longitude ranges of 60°–180°, revealing that the physical environments from those sources in the Local arm or the tails of Galactic arms do not easily excite the 12.2 GHz masers. In addition, two detections of highly excited-state OH masers at the 13.4 GHz transition were made, one of which is a new detection. Compared to previous surveys, one-third of the detected 12.2 GHz masers show considerable flux variations, implying the possible changes of their physical environments associated with variable radiation fields from their host high-mass young stellar objects. A positive log–log correlation is found between the luminosities of the 6.7 and 12.2 GHz masers in our observed sample, suggesting that both the transition masers have similar excitation conditions. The statistical analysis for the relationships between the methanol maser luminosity and UC H ii region spatial size indicates that the maser luminosities of both the 6.7 and 12.2 GHz transitions have a decreasing trend with the spatial sizes of the associated UC H ii regions, indicating that the Class II methanol masers might fade away with the H ii region evolution.


2021 ◽  
Vol 923 (2) ◽  
pp. 198
Author(s):  
James M. De Buizer ◽  
Wanggi Lim ◽  
Mengyao Liu ◽  
Nicole Karnath ◽  
James T. Radomski

Abstract We present our third set of results from our mid-infrared imaging survey of Milky Way Giant H ii regions with our detailed analysis of W49A, one of the most distant, yet most luminous, GH ii regions in the Galaxy. We used the FORCAST instrument on the Stratospheric Observatory For Infrared Astronomy (SOFIA) to obtain 20 and 37 μm images of the entire ∼5.′0 × 3.′5 infrared-emitting area of W49A at a spatial resolution of ∼3″. Utilizing these SOFIA data in conjunction with previous multiwavelength observations from the near-infrared to radio, including Spitzer-IRAC and Herschel-PACS archival data, we investigate the physical nature of individual infrared sources and subcomponents within W49A. For individual compact sources, we used the multiwavelength photometry data to construct spectral energy distributions (SEDs) and fit them with massive young stellar object (MYSO) SED models and find 22 sources that are likely to be MYSOs. Ten new sources are identified for the first time in this work. Even at 37 μm we are unable to detect infrared emission from the sources on the western side of the extremely extinguished ring of compact radio emission sources known as the Welch Ring. Utilizing multiwavelength data, we derived luminosity-to-mass ratio and virial parameters of the extended radio subregions of W49A to estimate their relative ages and find that overall the subcomponents of W49A have a very small spread in evolutionary state compared to our previously studied GH ii regions.


2021 ◽  
Vol 133 (1030) ◽  
pp. 124501
Author(s):  
Yujie Yang ◽  
Bin Jiang

Abstract In this paper, we pioneer a new machine-learning method to search for H ii regions in spectra from The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). H ii regions are emission nebulae created when young and massive stars ionize nearby gas clouds with high-energy ultraviolet radiation. Having more H ii region samples will help us understand the formation and evolution of stars. Machine-learning methods are often applied to search for special celestial bodies such as H ii regions. LAMOST has conducted spectral surveys and provided a wealth of valuable spectra for the research of special and rare celestial bodies. To overcome the problem of sparse positive samples and diversification of negative samples, a novel method called the self-calibrated convolution network is introduced and implemented for spectral processing. A deep network classifier with a structure called a self-calibrated block provides a high precision rate, and the recall rate is improved by adding the strategy of positive-unlabeled bagging. Experimental results show that this method can achieve better performance than other current methods. Eighty-nine spectra are identified as Galactic H ii regions after cross-matching with the WISE Catalog of Galactic H ii Regions, confirming the effectiveness of the method proposed in this paper.


2021 ◽  
Vol 923 (2) ◽  
pp. 169
Author(s):  
Carter L. Rhea ◽  
Laurie Rousseau-Nepton ◽  
Simon Prunet ◽  
Julie Hlavacek-Larrondo ◽  
R. Pierre Martin ◽  
...  

Abstract In the first two papers of this series, we demonstrated the dynamism of machine learning applied to optical spectral analysis by using neural networks to extract kinematic parameters and emission-line ratios directly from the spectra observed by the SITELLE instrument located at the Canada–France–Hawai’i Telescope. In this third installment, we develop a framework using a convolutional neural network trained on synthetic spectra to determine the number of line-of-sight components present in the SN3 filter (656–683 nm) spectral range of SITELLE. We compare this methodology to standard practice using Bayesian inference. Our results demonstrate that a neural network approach returns more accurate results and uses fewer computational resources over a range of spectral resolutions. Furthermore, we apply the network to SITELLE observations of the merging galaxy system NGC 2207/IC 2163. We find that the closest interacting sector and the central regions of the galaxies are best characterized by two line-of-sight components while the outskirts and spiral arms are well-constrained by a single component. Determining the number of resolvable components is crucial in disentangling different galactic components in merging systems and properly extracting their respective kinematics.


2021 ◽  
Vol 921 (2) ◽  
pp. 176
Author(s):  
Dana S. Balser ◽  
Trey V. Wenger ◽  
L. D. Anderson ◽  
W. P. Armentrout ◽  
T. M. Bania ◽  
...  

Abstract We investigate the kinematic properties of Galactic H ii regions using radio recombination line (RRL) emission detected by the Australia Telescope Compact Array at 4–10 GHz and the Jansky Very Large Array at 8–10 GHz. Our H ii region sample consists of 425 independent observations of 374 nebulae that are relatively well isolated from other, potentially confusing sources and have a single RRL component with a high signal-to-noise ratio. We perform Gaussian fits to the RRL emission in position-position–velocity data cubes and discover velocity gradients in 178 (42%) of the nebulae with magnitudes between 5 and 200 m s − 1 arcsec − 1 . About 15% of the sources also have an RRL width spatial distribution that peaks toward the center of the nebula. The velocity gradient position angles appear to be random on the sky with no favored orientation with respect to the Galactic plane. We craft H ii region simulations that include bipolar outflows or solid body rotational motions to explain the observed velocity gradients. The simulations favor solid body rotation since, unlike the bipolar outflow kinematic models, they are able to produce both the large, >40 m s − 1 arcsec − 1 , velocity gradients and also the RRL width structure that we observe in some sources. The bipolar outflow model, however, cannot be ruled out as a possible explanation for the observed velocity gradients for many sources in our sample. We nevertheless suggest that most H ii region complexes are rotating and may have inherited angular momentum from their parent molecular clouds.


2021 ◽  
Vol 508 (2) ◽  
pp. 1582-1589
Author(s):  
F Mannucci ◽  
F Belfiore ◽  
M Curti ◽  
G Cresci ◽  
R Maiolino ◽  
...  

ABSTRACT The diffuse ionized gas (DIG) contributes to the nebular emission of galaxies, resulting in emission line flux ratios that can be significantly different from those produced by H ii regions. Comparing the emission of [SII]λ6717,31 between pointed observations of H ii regions in nearby galaxies and integrated spectra of more distant galaxies, it has been recently claimed that the DIG can also deeply affect the emission of bright, star-forming galaxies, and that a large correction must be applied to observed line ratios to recover the genuine contribution from H ii regions. Here, we show instead that the e?ect of DIG on the integrated spectra of star-forming galaxies is lower than assumed in previous work. Here we show that, in contrast, aperture effects on the spectroscopy of nearby H ii regions are largely responsible for the observed difference: When spectra of local H ii regions are extracted using large enough apertures while still avoiding the DIG, the observed line ratios are the same as in more distant galaxies. This result is highly relevant for the use of strong-line methods to measure metallicity.


Author(s):  
Benjamin Metha ◽  
Michele Trenti ◽  
Tingjin Chu

Abstract Thanks to recent advances in integral field spectroscopy (IFS), modern surveys of nearby galaxies are capable of resolving metallicity maps of H ii regions down to scales of ∼50pc. However, statistical analysis of these metallicity maps has seldom gone beyond fitting basic linear regressions and comparing parameters to global galaxy properties. In this paper (the first of a series), we introduce techniques from spatial statistics that are well suited for detailed analysis of both small- and large-scale metallicity variations within the interstellar media (ISMs) of local galaxies. As a first application, we compare the observed structure of small-scale metallicity fluctuations within 7 local galaxies observed by the PHANGS collaboration to predictions from a stochastic, physically motivated, analytical model developed by Krumholz & Ting. We show that while the theoretical model underestimates the amount of correlated scatter in the galactic metallicity distributions by 3 − 4 orders of magnitude, it provides good estimates of the physical scale of metallicity correlations. We conclude that the ISM of local spiral galaxies is far from homogeneous, with regions of size ∼1 kpc showing significant departures from the mean metallicity at each galactocentric radius.


Author(s):  
Nimisha Kumari ◽  
Ricardo Amorín ◽  
Enrique Pérez-Montero ◽  
Jose Vílchez ◽  
Roberto Maiolino

Abstract We investigate radiation hardness within a representative sample of 67 nearby (0.02 ≲  z  ≲ 0.06) star-forming (SF) galaxies using the integral field spectroscopic data from the MaNGA survey. The softness parameter η = $\frac{O^{+}/O^{2+}}{S^{+}/S^{2+}}$ is sensitive to the spectral energy distribution of the ionizing radiation. We study η via the observable quantity η′ ($=\frac{[O\rm \small {II}]/[O\rm \small {III}]}{[S\rm \small {II}][S\rm \small {III}]}$) We analyse the relation between radiation hardness (traced by η and η′) and diagnostics sensitive to gas-phase metallicity, electron temperature, density, ionization parameter, effective temperature and age of ionizing populations. It is evident that low metallicity is accompanied by low log η′, i.e. hard radiation field. No direct relation is found between radiation hardness and other nebular parameters though such relations can not be ruled out. We provide empirical relations between log $\rm \eta$ and strong emission line ratios N2, O3N2 and Ar3O3 which will allow future studies of radiation hardness in SF galaxies where weak auroral lines are undetected. We compare the variation of [O iii]/[O ii] and [S iii]/[S ii] for MaNGA data with SF galaxies and H ii regions within spiral galaxies from literature, and find that the similarity and differences between different data set is mainly due to the metallicity. We find that predictions from photoionizaion models considering young and evolved stellar populations as ionizing sources in good agreement with the MaNGA data. This comparison also suggests that hard radiation fields from hot and old low-mass stars within or around SF regions might significantly contribute to the observed η values.


2021 ◽  
Vol 504 (2) ◽  
pp. 1627-1643
Author(s):  
Yingjie Cheng ◽  
Q Daniel Wang ◽  
Seunghwan Lim

ABSTRACT X-ray observations provide a potentially powerful tool to study starburst feedback. The analysis and interpretation of such observations remain challenging, however, due to various complications, including the non-isothermality of the diffuse hot plasma and the inhomogeneity of the foreground absorption. We here illustrate such complications and a way to mitigate their effects by presenting an X-ray spectroscopy of the 30 Doradus nebula in the Large Magellanic Clouds, based on a 100 ks Suzaku observation. We measure the thermal and chemical properties of the hot plasma and quantitatively confront them with the feedback expected from embedded massive stars. We find that our spatially resolved measurements can be well reproduced by a global modelling of the nebula with a lognormal temperature distribution of the plasma emission measure and a lognormal foreground absorption distribution. The metal abundances and total mass of the plasma are consistent with the chemically enriched mass ejection expected from the central OB association and a $\sim 55{{\ \rm per\ cent}}$ mass-loading from the ambient medium. The total thermal energy of the plasma is smaller than what is expected from a simple superbubble model, demonstrating that important channels of energy loss are not accounted for. Our analysis indeed shows tentative evidence for a diffuse non-thermal X-ray component, indicating that cosmic ray acceleration needs to be considered in such a young starburst region. Finally, we suggest that the lognormal modelling may be suitable for the X-ray spectral analysis of other giant H ii regions, especially when spatially resolved spectroscopy is not practical.


Sign in / Sign up

Export Citation Format

Share Document