terahertz waves
Recently Published Documents


TOTAL DOCUMENTS

746
(FIVE YEARS 218)

H-INDEX

38
(FIVE YEARS 9)

Photonics ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 26
Author(s):  
Jin Wang ◽  
Kosuke Sato ◽  
Yuichi Yoshida ◽  
Kenji Sakai ◽  
Toshihiko Kiwa

Terahertz waves have gained increasingly more attention because of their unique characteristics and great potential in a variety of fields. In this study, we introduced the recent progress of our versatile terahertz chemical microscope (TCM) in the detection of small biomolecules, ions, cancer cells, and antibody–antigen immunoassaying. We highlight the advantages of our TCM for chemical sensing and biosensing, such as label-free, high-sensitivity, rapid response, non-pretreatment, and minute amount sample consumption, compared with conventional methods. Furthermore, we demonstrated its new application in detection of allergic-related histamine at low concentration in buffer solutions.


2022 ◽  
Vol 123 ◽  
pp. 111924
Author(s):  
Zhixiang Wu ◽  
Jiexian Zhu ◽  
Yiyang Zou ◽  
Hu Deng ◽  
Liang Xiong ◽  
...  

2022 ◽  
Author(s):  
Adnan Zahid ◽  
Kia Dashtipour ◽  
Hasan T. Abbas ◽  
Ismail Ben Mabrouk ◽  
Muath Al-Hasan ◽  
...  

2021 ◽  
Vol 13 (4) ◽  
pp. 88
Author(s):  
Mateusz Surma ◽  
Mateusz Kaluza ◽  
Patrycja Czerwińska ◽  
Paweł Komorowski ◽  
Agnieszka Siemion

Terahertz (THz) optics often encounters the problem of small f number values (elements have relatively small diameters comparing to focal lengths). The need to redirect the THz beam out of the optical axis or form particular intensity distributions resulted in the application of iterative holographic methods to design THz diffractive elements. Elements working on-axis do not encounter significant improvement while using iterative holographic methods, however, for more complicated distributions the difference becomes meaningful. Here, we propose a totally different approach to design THz holograms, utilizing a neural network based algorithm, suitable also for complicated distributions. Full Text: PDF ReferencesY. Tao, A. Fitzgerald and V. Wallace, "Non-Contact, Non-Destructive Testing in Various Industrial Sectors with Terahertz Technology", Sensors, 20(3), 712 (2020). CrossRef J. O'Hara, S. Ekin, W. Choi and I. Song, "A Perspective on Terahertz Next-Generation Wireless Communications", Technologies, 7(2), 43 (2019). CrossRef L. Yu et al., "The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges", RSC Advances, 9(17), 9354 (2019). CrossRef A. Siemion, "The Magic of Optics—An Overview of Recent Advanced Terahertz Diffractive Optical Elements", Sensors, 21(1), 100 (2020). CrossRef A. Siemion, "Terahertz Diffractive Optics—Smart Control over Radiation", J. Infrared Millim. Terahertz Waves, 40(5), 477 (2019). CrossRef M. Surma, I. Ducin, P. Zagrajek and A. Siemion, "Sub-Terahertz Computer Generated Hologram with Two Image Planes", Appl. Sci., 9(4), 659 (2019). CrossRef S. Banerji and B.Sensale-Rodriguez, "A Computational Design Framework for Efficient, Fabrication Error-Tolerant, Planar THz Diffractive Optical Elements", Sci. Rep., 9(1), 5801 (2019). CrossRef J. Sun and F. Hu, "Three-dimensional printing technologies for terahertz applications: A review", Int. J. RF. Microw. C. E., 30(1) (2020). CrossRef E. Castro-Camus, M. Koch and A. I. Hernandez-Serrano, "Additive manufacture of photonic components for the terahertz band", J. Appl. Phys., 127(21), 210901 (2020). CrossRef https://community.wolfram.com/groups/-/m/t/2028026?p_%20479%20p_auth=blBtLb5d DirectLink P. Komorowski, et al., "Three-focal-spot terahertz diffractive optical element-iterative design and neural network approach", Opt. Express, 29(7), 11243-11253 (2021) CrossRef M. Sypek, "Light propagation in the Fresnel region. New numerical approach", Opt. Commun., 116(1-3), 43 (1995). CrossRef


2021 ◽  
Author(s):  
Min Zhong ◽  
Jiu-sheng Li

Abstract We propose a novel metasurface based on a combined pattern of outer C-shaped ring and inner rectangular ring. By Fourier convolution operation to generating different predesigned sequences of metasurfaces, we realize various functionalities to flexible manipulate terahertz waves including vortex terahertz beam splitting, anomalous vortex terahertz wave deflection, vortex terahertz wave splitting and deflection simultaneously. The incident terahertz wave can be flexibly controlled in a single metasurface. The designed metasurface has an extensive application prospect in the field of future terahertz communication and sensing.


Photonics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 9
Author(s):  
Kazutoshi Kato

Beam forming and beam steering are inevitable technologies for the practical application of high-frequency electromagnetic waves. Specifically, beam control technology using a phased array for terahertz waves above 100 GHz is necessary to realize the future of high-speed wireless communication. By photomixing, which is a promising method for generating terahertz waves, the phase of the generated waves can be tuned in the optical domain, so that the beam from the phased array can be controlled by photonics technologies. Directing the beam of a terahertz wave enables wireless communication to be improved not only via an increase in power efficiency but also in security in the physical layer of the wireless transmission. By utilizing this advantage and using coherent detection at the receiver, a secured wireless communication system is proposed, and the fundamental mechanism is demonstrated in a feasibility experiment.


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 36
Author(s):  
Hamdi Bilel ◽  
Aguili Taoufik

In this study, we introduce a new formulation based on Floquet (Fourier) spectral analysis combined with a spectral modulation technique (and its spatial form) to study strongly coupled sublattices predefined in the infinite and large finite extent of almost-periodic antenna arrays (e.g., metasurfaces). This analysis is very relevant for dense-massive-MIMO, intelligent-surfaces, 5G, and 6G applications (used for very small areas with a large number of elements such as millimeter and terahertz waves applications). The numerical method that is adopted to model the structure is the method of moments simplified by equivalent circuits MoM GEC. Other numerical methods (such as the ASM-array scanning method and the windowing Fourier method) used this analysis in their kernel to treat periodic and pseudo-periodic (or quasi-periodic) arrays.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1580
Author(s):  
Yi-Hong Shih ◽  
Harry Miyosi Silalahi ◽  
Ting-I Tsai ◽  
Yi-Chen Chen ◽  
Jou-Yu Su ◽  
...  

A terahertz metasurface that is imbedded into a dye-doped liquid crystal (DDLC) cell is fabricated in this work. After the metasurface-imbedded DDLC cell is irradiated with a linearly polarized pump beam, the irradiated cell is measured with a terahertz spectrometer. The irradiation of the pump beam causes the adsorption of the dye on one of the substrates of the cell, scattering incident terahertz waves and decreasing the transmittances of the terahertz metasurface at all the frequencies of its resonance spectrum. In addition, these transmittances decrease with an increase in the irradiation times of the pump beam. The adsorbed dye molecules are erased from the substrate after the cell is heated by a hot plate. The cell has similar spectra before the irradiation of the pump beam and after the heating of the hot plate. The aforementioned results reveal that the metasurface-imbedded DDLC cell is an optically tunable and thermally erasable terahertz intensity modulator. Therefore, this cell has the potential in developing intensity attenuators for terahertz imaging, frequency isolators for terahertz telecommunication, and spatial light modulators for terahertz information encryption and decryption.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1578
Author(s):  
Ibraheem Al-Naib

In this article, a planar metamaterial sensor designed at terahertz (THz) frequencies is utilized to sense glucose concentration levels that cover hypoglycemia, normal, and hyperglycemia conditions that vary from 54 to 342 mg/dL. The sensor was developed using a symmetric complementary split rectangular resonator at an oblique incidence angle. The resonance frequency shift was used as a measure of the changes in the glucose level of the samples. The increase in the glucose concentration level exhibited clear and noticeable redshifts in the resonance frequency. For instance, a 67.5 GHz redshift has been observed for a concentration level of 54 mg/dL and increased up to 122 GHz for the 342 mg/dL concentration level. Moreover, a high sensitivity level of 75,700 nm/RIU was observed for this design. In the future, the proposed THz sensors may have potential applications in diagnosing hypocalcemia and hyperglycemia cases.


Sign in / Sign up

Export Citation Format

Share Document