coal mine methane
Recently Published Documents


TOTAL DOCUMENTS

156
(FIVE YEARS 44)

H-INDEX

18
(FIVE YEARS 5)

Fuel ◽  
2021 ◽  
Vol 305 ◽  
pp. 121467
Author(s):  
Namrata Gaikwad ◽  
Jitendra Sangwai ◽  
Praveen Linga ◽  
Rajnish Kumar

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7957
Author(s):  
Jinsheng Lv ◽  
Junrui Shi ◽  
Mingming Mao ◽  
Xiangjin Kong ◽  
Dan Zhou

In this study, a steady state model for burning of coal mine methane in a Reverse Flow Burner (RFB) with full kinetics was developed by analogy of a steady counter-flow reactor, and the developed model was used for quick prediction of the lean combustibility limit (LCL). The model was successfully validated with experimental and numerical results, and it was shown that the developed model has excellent accuracy and computational efficiency. Good agreement between the predicted temperature, LCL, and the experiments was observed. The LCL of the equivalence ratio of 0.022 for methane/air mixture was obtained by the developed model. The model was then used to evaluate LCL for the RFB, focusing on the effect of heat loss and burner length on LCL. This indicated that the computational time using the developed model can be reduced by a factor of 1560 compared to the complete transient model.


Author(s):  
Junlian Gao ◽  
Chenghe Guan ◽  
Bo Zhang ◽  
Ke Li

Abstract China is the world’s largest anthropogenic methane (CH4) emitter, with coal mine methane (CMM) as one of the main contributors. However, previous studies have not reach consensus on the magnitude and trend of China’s CMM emissions since 2010. Through distribution fitting and Monte Carlo methods, dynamic emission factors (EFs) of CMM at the province-level were derived with high confidence; along with the updated data on surface mining, abandoned coal mines, and methane utilization, we revealed that China’s annual CMM emissions were estimated at 20.11 Tg between 2010 and 2019 with a decline of 0.93 Tg yr-1. Although coal production was revived in 2017, we found that the growing trend of China’s CMM emissions since 2012 were curbed by the previously-overlooked factors including the growth of CMM utilization and coal production from surface mining, and decrease of emission factors driven by the closure of high CH4-content coal mines and a regional production shift to lower-emission areas.


Author(s):  
Xinxin Wang ◽  
Fubao Zhou ◽  
Yihan Ling ◽  
Yaning Xiao ◽  
Bo Ma ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Liang Zhang ◽  
Qingjie Qi ◽  
Kai Deng ◽  
Shaojie Zuo ◽  
YingJie Liu

Extracting coal mine methane (CMM) is important for underground mining safety. The tree-type borehole drainage (TTBD) technique can effectively remove methane from coal seams. Determining a suitable drilling pattern for multiple tree-type boreholes will promote the efficient application of this technique in coal mines. Aimed at solving the problem that the optimum methane extraction layout for multiple tree-type boreholes is unclear, this study first constructed a full-coupled thermo-hydro-mechanical model to simulate methane flow in coal. This model and data from a coal mine were used to investigate the effect of multiple tree-type borehole layouts, tree-type borehole spacing, different Langmuir volume and different Langmuir pressure constants, and initial coal permeabilities on CMM drainage. The results show that the different tree-type borehole layouts result in significant differences in drainage and that the use of a rhombic sub-borehole layout can reduce the methane pre-drainage time by up to 44.4%. As the tree-type borehole spacing increases, the total time required for pre-drainage increases as a power function. As the Langmuir pressure constant, the fracture permeability, or the matrix permeability increases, the effective drainage zone expands. The effective drainage zone also expands when the Langmuir volume constant decreases but all these changes are accompanied by a shortening of the drainage completion time. These results can provide a reliable basis for optimizing tree-type borehole drilling layouts.


Author(s):  
Huaming Dai ◽  
Huiwei Zhu ◽  
Pan Yang ◽  
Hongchao Dai ◽  
Song He ◽  
...  

Author(s):  
Minghao Yi ◽  
Liang Wang ◽  
Congmeng Hao ◽  
Qingquan Liu ◽  
Zhenyang Wang

AbstractThe purpose of underground methane drainage technology is to prevent methane disasters and enable the efficient use of coal mine methane (CMM), and the sealing depth is a key factor that affects the performance of underground methane drainage. In this work, the layouts of in-seam and crossing boreholes are considered to analyze the stress distribution and failure characteristics of roadway surrounding rock through a numerical simulation and field stress investigation to determine a reasonable sealing depth. The results show that the depths of the plastic and elastic zones in two experimental coal mines are 16 and 20 m respectively. Borehole sealing minimizes the air leakage through the fractures around the roadway when the sealing material covers the failure and plastic zones, and the field test results for CMM drainage at different sealing depths indicate that the CMM drainage efficiency increases with increasing sealing depth but does not change once the sealing depth exceeds the plastic zone. Moreover, sealing in the high-permeability roadway surrounding rock does not have a strong influence on the borehole sealing performance. Considering these findings, a new CMM drainage system for key sealing in the low-permeability zone was developed that is effective for improving the CMM drainage efficiency and prolonging the high-concentration CMM drainage period. The proposed approach offers a valuable quantitative analysis method for selecting the optimum sealing parameters for underground methane drainage, thereby improving considerably the drainage and utilization rates of CMM.


Sign in / Sign up

Export Citation Format

Share Document