biharmonic equations
Recently Published Documents


TOTAL DOCUMENTS

174
(FIVE YEARS 36)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Xiu Ye ◽  
Shangyou Zhang

Abstract A C 0 conforming discontinuous Galerkin (CDG) finite element method is introduced for solving the biharmonic equation. The first strong gradient of C 0 finite element functions is a vector of discontinuous piecewise polynomials. The second gradient is the weak gradient of discontinuous piecewise polynomials. This method, by its name, uses nonconforming (non C 1) approximations and keeps simple formulation of conforming finite element methods without any stabilizers. Optimal order error estimates in both a discrete H 2 norm and the L 2 norm are established for the corresponding finite element solutions. Numerical results are presented to confirm the theory of convergence.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Yuri N. Obukhov

AbstractThe electromagnetic theory is considered in the framework of the generally covariant approach, that is applied to the analysis of electromagnetism in noninertial coordinate and frame systems. The special-relativistic formulation of Maxwell’s electrodynamics arises in the flat Minkowski spacetime when the general coordinate transformations are restricted to a class of transformations preserving the Minkowski line element. The particular attention is paid to the analysis of the electromagnetism in the noninertial rotating reference system. For the latter case, the general stationary solution of the Maxwell equations in the absence of the electric current is constructed in terms of the two scalar functions satisfying the Poisson and the biharmonic equations with an arbitrary charge density as a matter source. The classic problem of Schiff is critically revisited.


2021 ◽  
Vol 7 (7) ◽  
pp. 70324-70341
Author(s):  
Leandro Correa Paes Leme ◽  
Helder Candido Rodrigues ◽  
Hamilton Prado Bueno

2021 ◽  
Vol 15 (2) ◽  
pp. 82-90
Author(s):  
Onur Şahin ◽  
Barış Erbaş ◽  
Brent Wilson

Abstract Low-frequency analysis of in-plane motion of an elastic rectangle subject to end loadings together with sliding boundary conditions is considered. A perturbation scheme is employed to analyze the dynamic response of the elastic rectangle revealing nonhomogeneous boundary-value problems for harmonic and biharmonic equations corresponding to leading and next order expansions, respectively. The solution of the biharmonic equation obtained by the separation of variables, a consequence of sliding boundary conditions, gives an asymptotic correction to the rigid body motion of the rectangle. The derived explicit approximate formulae are tested for different kinds of end loadings together with numerical examples demonstrating the comparison against the exact solutions.


2021 ◽  
Vol 203 ◽  
pp. 112156
Author(s):  
Nanbo Chen ◽  
Zhihua Huang ◽  
Xiaochun Liu

Sign in / Sign up

Export Citation Format

Share Document