cell membrane damage
Recently Published Documents


TOTAL DOCUMENTS

179
(FIVE YEARS 66)

H-INDEX

26
(FIVE YEARS 5)

2022 ◽  
Vol 9 ◽  
Author(s):  
Xueping Guo ◽  
Wenjing Mo ◽  
Dingyang Zhang ◽  
Yurong Wang ◽  
Fang Cao ◽  
...  

In this study, a spherical silica nanoparticle was explored as a gatifloxacin carrier synthesized by the chemical precipitation method. It was found that there was no new chemical bond formation during the loading process between gatifloxacin and silica, which implies that the binding was driven by physical interaction. In addition, the drug loading and encapsulation efficiency could be improved by appropriately increasing nano-silica content in the loading process. Meanwhile, the release rate of gatifloxacin after loading nano-silica was also improved, suggesting the successful design of a controlled-release delivery composite. The silica nanocarrier could significantly improve the antibacterial performance of Escherichia coli by 2.1 times, which was higher than the pure gatifloxacin. The 24 h bacteriostatic rate was higher than that of a simple mixture of silica nanoparticles and gatifloxacin. Strong reactive oxygen species (ROS) in GAT-SiO2 NPs suggests that ROS might be associated with bactericidal activity. The synergy between the physicochemical effect and ROS production of this material is proposed as the mechanism of its antibacterial activity, which can also be confirmed by the cell membrane damage observed under electron microscopy and DNA damage experiments. Collectively, our finding indicates that nano-silica microspheres could serve as a promising carrier for the sustained release of gatifloxacin, thereby providing a new carrier design scheme for the improvement of the antibacterial effect.


2022 ◽  
Vol 12 ◽  
Author(s):  
Yuxiang Zhang ◽  
Jianping Wei ◽  
Hong Guo ◽  
Chen Niu ◽  
Yahong Yuan ◽  
...  

Cinnamic acid (CA) is a safe and effective antimicrobial agent. The objective of this study was to reveal the antibacterial mechanism of CA against a food-derived Pseudomonas fragi 38-8, from the aspects of bacterial growth kinetics, cell membrane homeostasis, cell microstructure, and transcription. The minimum inhibitory concentration (MIC) of CA against P. fragi 38-8 was 0.25 mg/ml. CA retarded bacterial growth and induced a series of cell membrane changes. After CA treatment, cell membrane homeostasis was destroyed, which was evidenced by cell membrane depolarization, intracellular pH reduction, and intracellular ATPase activity decrease. Field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), and confocal laser scanning fluorescence microscope (CLSM) realized the visualization of cell microstructure changes, showing cell death and morphological changes, such as cell rupture, shrinkage, and hollowness. RNA sequencing analysis further confirmed the effects of CA to the cell membrane, because of the significant enrichment of differentially expressed genes (DEGs) related to membrane. The results of the phenotype tests and RNA-seq both focused on cell membrane damage, which showed that CA exerted antibacterial effect mainly by acting on cell membrane.


Author(s):  
Yash S. Raval ◽  
Abdelrhman Mohamed ◽  
Jayawant N. Mandrekar ◽  
Cody Fisher ◽  
Kerryl E. Greenwood-Quaintance ◽  
...  

Wound infections are caused by bacteria and/or fungi. The presence of fungal biofilms in wound beds presents a unique challenge, as fungal biofilms may be difficult to eradicate. The goal of this work was to assess the in vitro anti-biofilm activity of a H 2 O 2 -producing electrochemical bandage (e-bandage) against 15 yeast isolates representing commonly-encountered species. Time-dependent decreases in viable biofilm CFU counts of all isolates tested were observed, resulting in no visible colonies with 48 hours of exposure by plate culture. Fluorescence microscopic analysis showed extensive cell membrane damage of biofilm cells after e-bandage treatment. Reductions in intracellular ATP levels of yeast biofilm cells were recorded post e-bandage treatment. Our results suggest that exposure to H 2 O 2 -producing e-bandages reduce in vitro viable cell counts of yeast biofilms, making this a potential new topical treatment approach for fungal wound infections.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yishuai Lin ◽  
Ying Zhang ◽  
Shixing Liu ◽  
Dandan Ye ◽  
Liqiong Chen ◽  
...  

Colistin is being considered as “the last ditch” treatment in many infections caused by Gram-negative stains. However, colistin is becoming increasingly invalid in treating patients who are infected with colistin-resistant Escherichia coli (E. coli) and Klebsiella Pneumoniae (K. pneumoniae). To cope with the continuous emergence of colistin resistance, the development of new drugs and therapies is highly imminent. Herein, in this work, we surprisingly found that the combination of quercetin with colistin could efficiently and synergistically eradicate the colistin-resistant E. coli and K. pneumoniae, as confirmed by the synergy checkboard and time-kill assay. Mechanismly, the treatment of quercetin combined with colistin could significantly downregulate the expression of mcr-1 and mgrB that are responsible for colistin-resistance, synergistically enhancing the bacterial cell membrane damage efficacy of colistin. The colistin/quercetin combination was notably efficient in eradicating the colistin-resistant E. coli and K. pneumoniae both in vitro and in vivo. Therefore, our results may provide an efficient alternative pathway against colistin-resistant E. coli and K. pneumoniae infections.


2021 ◽  
Author(s):  
Yuchen Kang ◽  
Jiaxin Liu ◽  
Li Yang ◽  
Na Li ◽  
Yuhao Wang ◽  
...  

Abstract The gap between the current serious soil heavy metal (HM) contamination situation and the low efficiency of soil remediation has become one of the factors limiting economic development and human health. The aim of this study was to propose a method to improve the efficiency of phytoremediation by exogenous rutin application and to explain the potential mechanism. A series of rutin treatments were designed to evaluate the biomass, cadmium (Cd) accumulation and phytoremediation efficiency responses of Amaranthus hypochondriacus to different levels of rutin (0.5, 1.5, and 5 ppm) under different Cd stress levels (10, 25, 50, and 100 ppm). The determination of cell membrane damage indicators, the subcellular distribution of Cd and the establishment of a predictive model for Cd accumulation were also carried out. The results showed a decline in cell membrane damage with rutin application, and more Cd ions were immobilized in the cell wall than in the vacuole, resulting in an increase in Cd tolerance in plants. The addition of rutin caused significant effects on the synthesis of glutathione (GSH), including the advancement of the conversion of GSH to phytochelatins (PCs). Among them, PC2 and PC3 in the leaves contributed the most to the high accumulation of Cd in Amaranthus hypochondriacus according to the prediction model. Overall, the phytoremediation efficiency and phytoextraction amount of Amaranthus hypochondriacus with foliar rutin application were improved significantly by 260% and 319%, respectively. These findings can contribute to the further development of soil remediation in Cd-contaminated fields.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2215
Author(s):  
Lo’ay A. A. ◽  
Dina A. Ghazi ◽  
Nadi Awad Al-Harbi ◽  
Salem Mesfir Al-Qahtani ◽  
Sabry Hassan ◽  
...  

The growth and quality of vines are negatively affected by soil salinity if enough salts accumulate in the root zone. As part of the current study, we estimated the remediating effects of rootstocks under salinity. For this reason, “superior seedless” vines were grafted onto three different rootstocks, such as SO4, 1103 Paulson, and own-root (“superior seedless” with their own-root). The experiment was conducted in the 2019 and 2020 seasons. This study examines the effects of different rootstocks on vine growth, yield, and quality using “superior seedless” vines grown in sandy soil with salinity. Four stages of berry development were examined (flowering, fruit set, veraison, and harvest time). At harvest, yield characteristics (clusters per vine and cluster weight) were also assessed. Each parameter of the growth season was influenced separately. The K+ and Na+ ratios were also significantly increased, as were the salinity symptoms index and bunch yield per vine and quality. Rootstock 1103 Paulson improved photosynthetic pigments, K+ accumulation, Na+ uptake, and cell membrane damage in “superior seedless” vines compared to other rootstocks, according to the study results. As determined in the arid regions of northwestern Egypt, the 1103 Paulson can mitigate salinity issues when planting “superior seedless” vines on sandy soil.


Biophysica ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 405-412
Author(s):  
Uziel Jeffet ◽  
Shiri Livne ◽  
Arkadi Rahmanov ◽  
Nir Sterer

A previous study showed that sub-lethal exposure of blue light caused cell membrane damage in Fusobacterium nucleatum (Fn). The aim of the present study was to test the combined effect of blue light and silver nanoparticles against Fn. Bacterial suspensions were exposed to blue light (400–500 nm) with or without silver nanoparticles (10 nm). Exposed and non-exposed samples were studied for malodor production (Odor judge scores), VSC levels (Halimeter), reactive oxygen species (ROS) production (fluorimeter), and bacterial cell membrane damage (fluorescence microscopy). The results showed that combining blue light exposure and silver nanoparticles significantly reduced malodor and VSC production by Fn concomitant with increased ROS levels and bacterial cell membrane damage. These results suggest that silver nanoparticles may increase blue light phototoxicity against Fn.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5854
Author(s):  
Qiqi Han ◽  
Xinpeng Yan ◽  
Runguang Zhang ◽  
Guoliang Wang ◽  
Youlin Zhang

Due to the strong drug resistance of Pseudomonas aeruginosa (P. aeruginosa), the inhibition effects of conventional disinfectants and antibiotics are not obvious. Juglone extracted from discarded walnut husk, as a kind of plant-derived antimicrobial agent, has the advantages of naturalness, high efficiency, and low residue, with a potential role in the inhibition of P. aeruginosa. This study elucidated the inhibitory effect of juglone on the growth of plankton and the formation of P. aeruginosa biofilm. The results showed that juglone (35 μg/mL) had an irreversible inhibitory effect on P. aeruginosa colony formation (about 107 CFU/mL). The integrity and permeability of the cell membrane were effectively destroyed, accompanied by disorder of the membrane permeability, mass leakage of the cytoplasm, and ATP consumption. Further studies manifested that juglone could induce the abnormal accumulation of ROS in cells and block the formation of the cell membrane. In addition, RT-qPCR showed that juglone could effectively block the expression of five virulence genes and two genes involved in the production of extracellular polymers, thereby reducing the toxicity and infection of P. aeruginosa and preventing the production of extracellular polymers. This study can provide support for the innovation of antibacterial technology toward P. aeruginosa in food.


2021 ◽  
Vol 60 (2) ◽  
pp. 321-336
Author(s):  
Giovanni Luigi BRUNO ◽  
Maria Paola IPPOLITO ◽  
Francesco MANNERUCCI ◽  
Luca BRAGAZZI ◽  
Franca TOMMASI

Physiological features were examined of a 20-year-old Vitis vinifera ‘Italia’ table grape vineyard cropped in Apulia, Italy. Healthy vines with no foliar symptoms and any indications of wood or berry alterations, vines with natural wood infections by Phaeoacremonium minimum (syn. P. aleophilum) and Phaeomoniella chlamydospora showing brown wood streaking symptoms, and vines naturally infected with P. minimum, P. chlamydospora and Fomitiporia mediterranea with brown wood streaking and white rot symptoms, were surveyed. Bleeding xylem sap, collected at bud-break from healthy vines showed the greatest total ascorbic acid level, while vines with brown wood streaking and white rot had the greatest viscosity coefficient, glutathione concentration, and plant growth regulator activities. Compared to healthy vines, leaves of wood affected vines, sampled during the unfolded leaf, fruit setting, cluster closing and bunch ripening vine growth stages, had reduced fresh and dry weights, total chlorophyll concentrations, and increased leaf surface area. Low ascorbic acid and reduced glutathione concentrations, weak redox state, and moderate levels of dehydroascorbic acid and oxidized glutathione were also detected in these vines. Analyses also detected reduced activities of dehydroascorbate reductase, ascorbate free radical reductase and glutathione reductase in diseased vines. The cell membrane damage, associated with lipid peroxidation, was coupled with high hydrogen peroxide concentrations. These changes could contribute to the cell death of leaves and foliar symptom development. The ascorbate-glutathione cycle supports grapevine susceptibility to Esca complex-associated fungi.


Sign in / Sign up

Export Citation Format

Share Document