response to water
Recently Published Documents


TOTAL DOCUMENTS

1005
(FIVE YEARS 243)

H-INDEX

60
(FIVE YEARS 7)

Author(s):  
Yask Kulshreshtha ◽  
Philip J. Vardon ◽  
Yi Du ◽  
Guillaume Habert ◽  
Aurélie Vissac ◽  
...  

Earthen construction is re-gaining popularity as an ecological and economical alternative to contemporary building materials. While building with earth offers several benefits, its performance due to water ingress is a concern for its widespread application. This limitation is often solved by adding chemical stabilisers such as Portland cement and hydraulic lime. Chemical stabilisers are a subject of widespread debate as they increase the cost and embodied energy of the structure, and reduce the desirable characteristics of raw or unstabilised earth. This along with perceived environmental performance, renewability, and proven effectiveness in traditional earthen construction has led to a growing interest in biological or organic stabilisers. Although the strengthening mechanism of biological stabilisers is widely covered in scientific studies, discussion regarding the water-resistance is limited. This review aggregates the research from the field of earthen construction and geotechnical engineering and extends it to explain the possible mechanism responsible for the water-resistance behaviour of biologically stabilised earthen materials. This study includes a wide range of traditional and industrial biological stabilisers derived from animals (cow-dung, casein, chitosan), plants (starch, guar gum, cactus mucilage, lignin, tannin) seaweeds (alginate, agar, carrageen) and microbes (xanthan gum, gellan gum). A conceptual model of water-ingress in unstabilised earthen blocks is proposed and the response of biological stabiliser to water ingress and related physico-chemical and physical factors is discussed using the model at microscale (stabiliser interaction with clay, sand) and macroscale (hydraulic conductivity of block). Properties of stabilisers such as hydrophobicity, stability under wet conditions or interaction with cations have a dominant effect on the overall response to water ingress. Key gaps have been identified in the existing knowledge that are necessary to investigate in order to understand the water-resistance behaviour comprehensively. The study concludes with a brief assessment of biological stabilisers based on their performance and feasibility to use in contemporary earthen construction.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Nan Wu ◽  
Jun Yang ◽  
Guoning Wang ◽  
Huifeng Ke ◽  
Yan Zhang ◽  
...  

Abstract Background The fiber yield and quality of cotton are greatly and periodically affected by water deficit. However, the molecular mechanism of the water deficit response in cotton fiber cells has not been fully elucidated. Results In this study, water deficit caused a significant reduction in fiber length, strength, and elongation rate but a dramatic increase in micronaire value. To explore genome-wide transcriptional changes, fibers from cotton plants subjected to water deficit (WD) and normal irrigation (NI) during fiber development were analyzed by transcriptome sequencing. Analysis showed that 3427 mRNAs and 1021 long noncoding RNAs (lncRNAs) from fibers were differentially expressed between WD and NI plants. The maximum number of differentially expressed genes (DEGs) and lncRNAs (DERs) was identified in fibers at the secondary cell wall biosynthesis stage, suggesting that this is a critical period in response to water deficit. Twelve genes in cotton fiber were differentially and persistently expressed at ≥ five time points, suggesting that these genes are involved in both fiber development and the water-deficit response and could potentially be used in breeding to improve cotton resistance to drought stress. A total of 540 DEGs were predicted to be potentially regulated by DERs by analysis of coexpression and genomic colocation, accounting for approximately 15.76% of all DEGs. Four DERs, potentially acting as target mimics for microRNAs (miRNAs), indirectly regulated their corresponding DEGs in response to water deficit. Conclusions This work provides a comprehensive transcriptome analysis of fiber cells and a set of protein-coding genes and lncRNAs implicated in the cotton response to water deficit, significantly affecting fiber quality during the fiber development stage.


2021 ◽  
Author(s):  
P. S. Suriyampola ◽  
A. A. Iruri‐Tucker ◽  
L. Padilla‐Veléz ◽  
A. Enriquez ◽  
D. S. Shelton ◽  
...  

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
G. Alden Holmes ◽  
Betsy J. Furukawa

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sandy E. Bergès ◽  
Denis Vile ◽  
Michel Yvon ◽  
Diane Masclef ◽  
Myriam Dauzat ◽  
...  

AbstractChanges in plant abiotic environments may alter plant virus epidemiological traits, but how such changes actually affect their quantitative relationships is poorly understood. Here, we investigated the effects of water deficit on Cauliflower mosaic virus (CaMV) traits (virulence, accumulation, and vectored-transmission rate) in 24 natural Arabidopsis thaliana accessions grown under strictly controlled environmental conditions. CaMV virulence increased significantly in response to water deficit during vegetative growth in all A. thaliana accessions, while viral transmission by aphids and within-host accumulation were significantly altered in only a few. Under well-watered conditions, CaMV accumulation was correlated positively with CaMV transmission by aphids, while under water deficit, this relationship was reversed. Hence, under water deficit, high CaMV accumulation did not predispose to increased horizontal transmission. No other significant relationship between viral traits could be detected. Across accessions, significant relationships between climate at collection sites and viral traits were detected but require further investigation. Interactions between epidemiological traits and their alteration under abiotic stresses must be accounted for when modelling plant virus epidemiology under scenarios of climate change.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jie-Xia Liu ◽  
Qian Jiang ◽  
Jian-Ping Tao ◽  
Kai Feng ◽  
Tong Li ◽  
...  

AbstractWater dropwort (Liyang Baiqin, Oenanthe javanica (BI.) DC.) is an aquatic perennial plant from the Apiaceae family with abundant protein, dietary fiber, vitamins, and minerals. It usually grows in wet soils and can even grow in water. Here, whole-genome sequencing of O. javanica via HiSeq 2000 sequencing technology was reported for the first time. The genome size was 1.28 Gb, including 42,270 genes, of which 93.92% could be functionally annotated. An online database of the whole-genome sequences of water dropwort, Water dropwortDB, was established to share the results and facilitate further research on O. javanica (database homepage: http://apiaceae.njau.edu.cn/waterdropwortdb). Water dropwortDB offers whole-genome and transcriptome sequences and a Basic Local Alignment Search Tool. Comparative analysis with other species showed that the evolutionary relationship between O. javanica and Daucus carota was the closest. Twenty-five gene families of O. javanica were found to be expanded, and some genetic factors (such as genes and miRNAs) related to phenotypic and anatomic differentiation in O. javanica under different water conditions were further investigated. Two miRNA and target gene pairs (miR408 and Oja15472, miR171 and Oja47040) were remarkably regulated by water stress. The obtained reference genome of O. javanica provides important information for future work, thus making in-depth genetic breeding and gene editing possible. The present study also provides a foundation for the understanding of the O. javanica response to water stress, including morphological, anatomical, and genetic differentiation.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Hagai Shohat ◽  
Natanella Illouz Eliaz ◽  
David Weiss

AbstractThe growth-promoting hormone gibberellin (GA) regulates numerous developmental processes throughout the plant life cycle. It also affects plant response to biotic and abiotic stresses. GA metabolism and signaling in tomato (Solanum lycopersicum) have been studied in the last three decades and major components of the pathways were characterized. These include major biosynthesis and catabolism enzymes and signaling components, such as the three GA receptors GIBBERELLIN INSENSITIVE DWARF 1 (GID1) and DELLA protein PROCERA (PRO), the central response suppressor. The role of these components in tomato plant development and response to the environment have been investigated. Cultivated tomato, similar to many other crop plants, are susceptible to water deficiency. Numerous studies on tomato response to drought have been conducted, including the possible role of GA in tomato drought resistance. Most studies showed that reduced levels or activity of GA improves drought tolerance and drought avoidance. This review aims to provide an overview on GA biosynthesis and signaling in tomato, how drought affects these pathways and how changes in GA activity affect tomato plant response to water deficiency. It also presents the potential of using the GA pathway to generate drought-tolerant tomato plants with improved performance under both irrigation and water-limited conditions.


Sign in / Sign up

Export Citation Format

Share Document