winery wastewater
Recently Published Documents


TOTAL DOCUMENTS

192
(FIVE YEARS 44)

H-INDEX

30
(FIVE YEARS 6)

Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 95
Author(s):  
Yeney Lauzurique ◽  
Lidia Carolina Espinoza ◽  
César Huiliñir ◽  
Verónica García ◽  
Ricardo Salazar

Winery wastewater represents the largest waste stream in the wine industry. This deals with the mineralization of the organic matter present in winery wastewater using anodic oxidation and two types of anodes—namely, a boron-doped diamond electrode (BDD) and two mixed metal oxides (MMO), one with the nominal composition Ti/Ru0.3Ti0.7O2 and the other with Ti/Ir0.45Ta0.55O2. To conduct the study, the variability of different quality parameters for winery wastewater from the Chilean industry was measured during eight months. A composite sample was treated using anodic oxidation without the addition of supporting electrolyte, and the experiments were conducted at the natural pH of the industrial wastewater. The results show that this effluent has a high content of organic matter (up to 3025 ± 19 mg/L of total organic carbon (TOC)), which depends on the time of the year and the level of wine production. With MMO electrodes, TOC decreased by 2.52% on average after 540 min, which may be attributed to the presence of intermediate species that could not be mineralized. However, when using a BDD electrode, 85% mineralization was achieved due to the higher generation of hydroxyl radicals. The electrolyzed sample contained oxamic, acetic, and propionic acid as well as different ions such as sulfate, chloride, nitrate, and phosphate. These ions can contribute to the formation of different species such as active species of chlorine, persulfate, and perphosphate, which can improve the oxidative power of the system.


Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 75
Author(s):  
Nuno Jorge ◽  
Ana R. Teixeira ◽  
Vanessa Guimarães ◽  
Marco S. Lucas ◽  
José A. Peres

The release of winery wastewater (WW) into the environment, without proper treatment, can cause severe problems to freshwater quality and natural fauna and flora. Therefore, in this work a treatment process was studied, combining adsorption and thermocatalytic oxidation processes. In a more specific way, it optimized the combination of activated sodium bentonite (Na-Mt) and potassium persulfate (KPS)/sodium percarbonate (SPC) as oxidant agents. With the combination of best operational conditions of adsorption ([Na-Mt] = 5.0 g/L, pH = 3.0, V = 500 mL, agitation 350 rpm, T = 298 K, t = 24 h) and thermocatalytic oxidation processes (/H2O2 ratio = 1:0.25, /H2O2 dosage = 0.1:0.025 (g/g), pH = 7.0, T = 343 K, agitation 350 rpm, t = 2 h), a total organic carbon, chemical oxygen demand and total polyphenols removal of 76.7, 81.4 and >99% was achieved, respectively. Finally, it was evaluated the effect of the treatment processes in the germination index (GI) of different plant seeds. A GI > 80% was achieved, showing a low phytotoxicity effect of the processes applied in the winery wastewater treatment.


Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 39
Author(s):  
Melody Blythe Johnson ◽  
Mehrab Mehrvar

Despite many wineries being equipped with onsite wastewater treatment, winery wastewater (WWW) co-treatment at municipal wastewater treatment plants (WWTPs) remains a common practice in wine-making regions. The complex and highly variable nature of WWW can result in negative impacts on WWTP operations, highlighting a need for improved co-treatment methods. In this paper, the feasibility of using the Fenton-like process to pre-treat WWW to enhance co-treatment at municipal WWTPs is assessed. First-stage pre-treatment of the WWW, in the form of dilution and settling or aerobic biological treatment, is used prior to the Fenton-like process. A three-factor BBD experimental design is used to identify optimal reaction time and initial H2O2 and Fe3+ concentrations. Chemical oxygen demand (COD) and total organic carbon (TOC) removal rates are not able to accurately reflect the extent of reaction. Additional trials identified solubilization of particulate COD and TOC, as well as samples handling requirements prior to analysis, as factors affecting the apparent COD and TOC removal rates. Inert suspended solids (ISS) generated during the sample handling process are found to be the response variable best suited to quantifying the extent of the Fenton-like reaction. Maximum ISS generation is observed at initial H2O2 and Fe3+ concentrations of 4000 mg/L and 325 mg/L, however, results suggest that optimal concentrations exceed these values. The impact of adding pre-treated WWW, with and without Fenton-like treatment, to municipal WWTPs’ primary clarifiers and aerobic bioreactors is also assessed via bench-scale trials. Challenges associated with co-treating WWW are found to remain despite the pre-treatment alternatives investigated, including negative impacts on simulated primary and secondary effluent quality. The Fenton-like AOP provides limited opportunity to optimize or enhance co-treatment at municipal WWTPs.


2021 ◽  
pp. 130181
Author(s):  
Raquel Cañadas ◽  
Ismael Díaz ◽  
Manuel Rodríguez ◽  
Emilio J. González ◽  
María González-Miquel

2021 ◽  
Vol 60 ◽  
pp. 102519
Author(s):  
Elena Spennati ◽  
Shabnam Mirizadeh ◽  
Alessandro A. Casazza ◽  
Carlo Solisio ◽  
Attilio Converti

2021 ◽  
Vol 169 ◽  
pp. 106311
Author(s):  
Ana Pascual ◽  
Rocio Pena ◽  
Santiago Gómez-Cuervo ◽  
David de la Varga ◽  
Juan A. Alvarez ◽  
...  
Keyword(s):  

Author(s):  
Nuno Jorge ◽  
Ana R. Teixeira ◽  
Carlos C. Matos ◽  
Marco S. Lucas ◽  
José A. Peres

This research assessed a novel treatment process of winery wastewater, through the application of a chemical-based process aiming to decrease the high organic carbon content, which represents a difficulty for wastewater treatment plants and a public health problem. Firstly, a coagulation–flocculation–decantation process (CFD process) was optimized by a simplex lattice design. Afterwards, the efficiency of a UV-C/ferrous iron/ozone system was assessed for organic carbon removal in winery wastewater. This system was applied alone and in combination with the CFD process (as a pre- and post-treatment). The coagulation–flocculation–decantation process, with a mixture of 0.48 g/L potassium caseinate and 0.52 g/L bentonite at pH 4.0, achieved 98.3, 97.6, and 87.8% removals of turbidity, total suspended solids, and total polyphenols, respectively. For the ozonation process, the required pH and ferrous iron concentration (Fe2+) were crucial variables in treatment optimization. With the application of the best operational conditions (pH = 4.0, [Fe2+] = 1.0 mM), the UV-C/ferrous iron/ozone system achieved 63.2% total organic carbon (TOC) removal and an energy consumption of 1843 kWh∙m−3∙order−1. The combination of CFD and ozonation processes increased the TOC removal to 66.1 and 65.5%, respectively, for the ozone/ferrous iron/UV-C/CFD and CFD/ozone/ferrous iron/UV-C systems. In addition, the germination index of several seeds was assessed and excellent values (>80%) were observed, which revealed the reduction in phytotoxicity. In conclusion, the combination of CFD and UV-C/ferrous iron/ozone processes is efficient for WW treatment.


2021 ◽  
pp. 117464
Author(s):  
Leonilde Marchão ◽  
José R. Fernandes ◽  
Ana Sampaio ◽  
José A. Peres ◽  
Pedro B. Tavares ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document