carbon change
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 17)

H-INDEX

17
(FIVE YEARS 3)

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6302
Author(s):  
Chau B. Tran ◽  
Zane Zondaka ◽  
Quoc Bao Le ◽  
Bharath Kumar Velmurugan ◽  
Rudolf Kiefer

Linear actuators based on polypyrrole (PPy) are envisaged to have only one ion that triggers the actuation direction, either at oxidation (anion-driven) or at reduction (cation-driven). PPy doped with dodecylbenzenesulfonate (PPy/DBS) is the most common applied conducting polymer having cation-driven actuation in aqueous solvent and mainly anion-driven actuation in an organic electrolyte. It is somehow desired to have an actuator that is independent of the applied solvent in the same actuation direction. In this research we made PPy/DBS with the addition of phosphorus tungsten acid, forming PPyPT films, as well with included carbide derived carbon (CDC) resulting in PPyCDC films. The solvent in electropolymerization was changed from an aqueous ethylene glycol mixture to pure EG forming PPyPT-EG and PPyCDC-EG composites. Our goal in this study was to investigate the linear actuation properties of PPy composites applying sodium perchlorate in aqueous (NaClO4-aq) and propylene carbonate (NaClO4-PC) electrolytes. Cyclic voltammetry and square potential steps in combination with electro-chemo-mechanical-deformation (ECMD) measurements of PPy composite films were performed. The PPyPT and PPyCDC had mixed ion-actuation in NaClO4-PC while in NaClO4-aq expansion at reduction (cation-driven) was observed. Those novel PPy composites electropolymerized in EG solvent showed independently which solvent applied mainly expansion at reduction (cation-driven actuator). Chronopotentiometric measurements were performed on all composites, revealing excellent specific capacitance up to 190 F g−1 for PPyCDC-EG (best capacitance retention of 90% after 1000 cycles) and 130 F g−1 for PPyPT-EG in aqueous electrolyte. The films were characterized by scanning electron microscopy (SEM), Raman, Fourier-transform infrared (FTIR) and energy dispersive X-ray spectroscopy (EDX).


2021 ◽  
Vol 13 (12) ◽  
pp. 2265
Author(s):  
Jonathan Sanderman ◽  
Kathleen Savage ◽  
Shree Dangal ◽  
Gabriel Duran ◽  
Charlotte Rivard ◽  
...  

A major limitation to building credible soil carbon sequestration programs is the cost of measuring soil carbon change. Diffuse reflectance spectroscopy (DRS) is considered a viable low-cost alternative to traditional laboratory analysis of soil organic carbon (SOC). While numerous studies have shown that DRS can produce accurate and precise estimates of SOC across landscapes, whether DRS can detect subtle management induced changes in SOC at a given site has not been resolved. Here, we leverage archived soil samples from seven long-term research trials in the U.S. to test this question using mid infrared (MIR) spectroscopy coupled with the USDA-NRCS Kellogg Soil Survey Laboratory MIR spectral library. Overall, MIR-based estimates of SOC%, with samples scanned on a secondary instrument, were excellent with the root mean square error ranging from 0.10 to 0.33% across the seven sites. In all but two instances, the same statistically significant (p < 0.10) management effect was found using both the lab-based SOC% and MIR estimated SOC% data. Despite some additional uncertainty, primarily in the form of bias, these results suggest that large existing MIR spectral libraries can be operationalized in other laboratories for successful carbon monitoring.


Author(s):  
Qiuju Wang ◽  
Xin Liu ◽  
Jingyang Li ◽  
Xiaoyu Yang ◽  
Zhenhua Guo

Straw return is considered an effective way to improve the soil organic carbon (SOC) content of farmland. Most studies have suggested that a straw application increases the SOC content; however, some suggest that a straw application reduces the SOC content when used in combination with mineral fertilisation. Therefore, a meta-analysis of the effect of a straw application on the SOC change is needed. This study comprises a meta-analysis of 115 observations from 65 research articles worldwide. Straw applications can significantly increase the proportion of the SOC in the soil. Straw applications caused a significant microbial biomass carbon (MBC) increase in tropical and warm climatic zones. The MBC increase was higher than the SOC increase. For agriculture, the most important soil functions are the maintenance of the crop productivity, the nutrient and water transformation, the biological flora and activity, and the maintenance of the microbial abundance and activity. These functions should be prioritised in order to maintain the SOC function and services. Straw applications should not be excessive, especially when combined with mineral fertilisation, in order to avoid the loss of carbon from the straw in the form of greenhouse gases. A large amount of unused fertiliser also leads to a series of environmental problems.


2020 ◽  
Vol 274 ◽  
pp. 111206
Author(s):  
Juraj Balkovič ◽  
Mikuláš Madaras ◽  
Rastislav Skalský ◽  
Christian Folberth ◽  
Michaela Smatanová ◽  
...  

Soil Systems ◽  
2020 ◽  
Vol 4 (3) ◽  
pp. 43
Author(s):  
Gayatri Yellajosula ◽  
Larry Cihacek ◽  
Tim Faller ◽  
Christopher Schauer

A 5-year study evaluated the change in the quantity of soil total C (STC), soil organic C (SOC), and soil inorganic C (SIC) stored in the surface 60 cm of the soil profile on two adjacent blocks of land with a long-term history of cropping (CH) or undisturbed grassland (NH) on similar soil types between 1999 and 2004. The NH area was tilled and a grass-legume species mix was seeded into plots on both the NH and the CH areas. Selected plots of restored grass were established so they could be grazed (GG) by livestock while other plots were left ungrazed (UG). Original undisturbed (and ungrazed) grassland plots within the NH area were used as a control treatment. Initially, STC and SOC in CH were lower than NH when compared under the semi-arid environmental conditions found in southwestern North Dakota. Over the study period, the undisturbed grass control plots had increases in STC and SOC levels in the soil profile of 3.90 kg·m−2 and 3.34 kg·m−2, respectively. Restored grass on the NH area with grazing showed increases in STC and SOC values of 2.11 and 1.26 kg·m−2, respectively, while without grazing, profile STC and SOC had values of 3.80 and 3.28 kg·m−2, respectively. Restored grass on the CH area showed increases in profile STC and SOC values of 0.55 and 1.96 kg·m−2, respectively, for the grazed plots and 0.78 and 2.11 kg·m−2, respectively, when left ungrazed. Soil inorganic C, though present in the soils, did not significantly change during the study. The lower C accumulation in the CH plots may be due to a lag time in the establishment of mycorrhizal associations with the seeded species, the inoculums of which were already present in the NH soils. Changes in STC were likely due to changes in water relationships in the soil profile where management changes affected water infiltration and its movement causing leaching of SIC below the 60 cm depth evaluated. Soils under undisturbed grassland continue to accumulate carbon while soils of the disturbed grassland or cropped prior to re-establishing grass showed losses that occurred due to either accumulating C at a lower rate or perhaps to C loss during the initial establishment period (1–2 years).


Sign in / Sign up

Export Citation Format

Share Document