core promoters
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 41)

H-INDEX

37
(FIVE YEARS 3)

BMC Cancer ◽  
2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Teng Huang ◽  
Jiaheng Li ◽  
San Ming Wang

Abstract Background Bladder cancer is one of the most mortal cancers. Bladder cancer has distinct gene expression signature, highlighting altered gene expression plays important roles in bladder cancer etiology. However, the mechanism for how the regulatory disorder causes the altered expression in bladder cancer remains elusive. Core promoter controls transcriptional initiation. We hypothesized that mutation in core promoter abnormality could cause abnormal transcriptional initiation thereby the altered gene expression in bladder cancer. Methods In this study, we performed a genome-wide characterization of core promoter mutation in 77 Spanish bladder cancer cases. Results We identified 69 recurrent somatic mutations in 61 core promoters of 62 genes and 28 recurrent germline mutations in 20 core promoters of 21 genes, including TERT, the only gene known with core promoter mutation in bladder cancer, and many oncogenes and tumor suppressors. From the RNA-seq data from bladder cancer, we observed  altered expression of the core promoter-mutated genes. We further validated the effects of core promoter mutation on gene expression by using luciferase reporter gene assay. We also identified potential drugs targeting the core promoter-mutated genes. Conclusions Data from our study highlights that core promoter mutation contributes to bladder cancer development through altering gene expression.


2021 ◽  
Author(s):  
Clarice K.Y. Hong ◽  
Barak A. Cohen

A classical model of gene regulation is that enhancers provide specificity whereas core promoters provide a modular site for the assembly of the basal transcriptional machinery. However, examples of core promoter specificity have led to an alternate hypothesis in which specificity is achieved by core promoters with different sequence motifs that respond differently to genomic environments containing different enhancers and chromatin landscapes. To distinguish between these models, we measured the activities of hundreds of diverse core promoters in four different genomic locations and, in a complementary experiment, six different core promoters at thousands of locations across the genome. Although genomic locations had large effects on expression, the intrinsic activities of different classes of promoters were preserved across genomic locations, suggesting that core promoters are modular regulatory elements whose activities are independently scaled up or down by different genomic locations. This scaling of promoter activities is nonlinear and depends on the genomic location and the strength of the core promoter. Our results support the classical model of regulation in which diverse core promoter motifs set the intrinsic strengths of core promoters, which are then amplified or dampened by the activities of their genomic environments.


2021 ◽  
Author(s):  
Jing Luan ◽  
Camille M. Syrett ◽  
Marit W. Vermunt ◽  
Allison Cote ◽  
Jacob M. Tome ◽  
...  

Transcription at most promoters is divergent, initiating at closely spaced oppositely oriented core promoters to produce sense transcripts along with often unstable upstream antisense (uasTrx). How antisense transcription is regulated and to what extent it is coordinated with sense transcription is largely unknown. Here by combining acute degradation of the multi-functional transcription factor CTCF and nascent transcription measurements, we find that CTCF specifically suppresses antisense but not sense transcription at hundreds of divergent promoters, the great majority of which bear proximal CTCF binding sites. Genome editing, chromatin conformation studies, and high-resolution transcript mapping revealed that precisely positioned CTCF directly suppresses the initiation of uasTrx, in a manner independent of its chromatin architectural function. Primary transcript RNA FISH revealed co-bursting of sense and anti-sense transcripts is disfavored, suggesting CTCF-regulated competition for transcription initiation. In sum, CTCF shapes the transcriptional landscape in part by suppressing upstream antisense transcription.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Jiliang Deng ◽  
Yanling Wu ◽  
Zhaohui Zheng ◽  
Nanzhu Chen ◽  
Xiaozhou Luo ◽  
...  

Abstract Background Saccharomyces cerevisiae is an important synthetic biology chassis for microbial production of valuable molecules. Promoter engineering has been frequently applied to generate more synthetic promoters with a variety of defined characteristics in order to achieve a well-regulated genetic network for high production efficiency. Galactose-inducible (GAL) expression systems, composed of GAL promoters and multiple GAL regulators, have been widely used for protein overexpression and pathway construction in S. cerevisiae. However, the function of each element in synthetic promoters and how they interact with GAL regulators are not well known. Results Here, a library of synthetic GAL promoters demonstrate that upstream activating sequences (UASs) and core promoters have a synergistic relationship that determines the performance of each promoter under different carbon sources. We found that the strengths of synthetic GAL promoters could be fine-tuned by manipulating the sequence, number, and substitution of UASs. Core promoter replacement generated synthetic promoters with a twofold strength improvement compared with the GAL1 promoter under multiple different carbon sources in a strain with GAL1 and GAL80 engineering. These results represent an expansion of the classic GAL expression system with an increased dynamic range and a good tolerance of different carbon sources. Conclusions In this study, the effect of each element on synthetic GAL promoters has been evaluated and a series of well-controlled synthetic promoters are constructed. By studying the interaction of synthetic promoters and GAL regulators, synthetic promoters with an increased dynamic range under different carbon sources are created.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Zhaolian Lu ◽  
Keenan Berry ◽  
Zhenbin Hu ◽  
Yu Zhan ◽  
Tae-Hyuk Ahn ◽  
...  

Abstract Transcription initiation is regulated in a highly organized fashion to ensure proper cellular functions. Accurate identification of transcription start sites (TSSs) and quantitative characterization of transcription initiation activities are fundamental steps for studies of regulated transcriptions and core promoter structures. Several high-throughput techniques have been developed to sequence the very 5′end of RNA transcripts (TSS sequencing) on the genome scale. Bioinformatics tools are essential for processing, analysis, and visualization of TSS sequencing data. Here, we present TSSr, an R package that provides rich functions for mapping TSS and characterizations of structures and activities of core promoters based on all types of TSS sequencing data. Specifically, TSSr implements several newly developed algorithms for accurately identifying TSSs from mapped sequencing reads and inference of core promoters, which are a prerequisite for subsequent functional analyses of TSS data. Furthermore, TSSr also enables users to export various types of TSS data that can be visualized by genome browser for inspection of promoter activities in association with other genomic features, and to generate publication-ready TSS graphs. These user-friendly features could greatly facilitate studies of transcription initiation based on TSS sequencing data. The source code and detailed documentations of TSSr can be freely accessed at https://github.com/Linlab-slu/TSSr.


Genetics ◽  
2021 ◽  
Author(s):  
Lily Li ◽  
Rachel Waymack ◽  
Mario Gad ◽  
Zeba Wunderlich

Abstract Proper development depends on precise spatiotemporal gene expression patterns. Most developmental genes are regulated by multiple enhancers and often by multiple core promoters that generate similar transcripts. We hypothesize that multiple promoters may be required either because enhancers prefer a specific promoter or because multiple promoters serve as a redundancy mechanism. To test these hypotheses, we studied the expression of the knirps locus in the early Drosophila melanogaster embryo, which is mediated by multiple enhancers and core promoters. We found that one of these promoters resembles a typical “sharp” developmental promoter, while the other resembles a “broad” promoter usually associated with housekeeping genes. Using synthetic reporter constructs, we found that some, but not all, enhancers in the locus show a preference for one promoter, indicating that promoters provide both redundancy and specificity. By analyzing the reporter dynamics, we identified specific burst properties during the transcription process, namely burst size and frequency, that are most strongly tuned by the combination of promoter and enhancer. Using locus-sized reporters, we discovered that enhancers with no promoter preference in a synthetic setting have a preference in the locus context. Our results suggest that the presence of multiple promoters in a locus is due both to enhancer preference and a need for redundancy and that “broad” promoters with dispersed transcription start sites are common among developmental genes. They also imply that it can be difficult to extrapolate expression measurements from synthetic reporters to the locus context, where other variables shape a gene’s overall expression pattern.


2021 ◽  
Vol 22 (18) ◽  
pp. 10024
Author(s):  
Lu Liu ◽  
Qiqi Li ◽  
Liu Yang ◽  
Qifa Li ◽  
Xing Du

TGF-β family signaling pathways, including TGF-β and BMP pathways, are widely involved in the regulation of health and diseases through downstream SMADs, which are also regulated by multiple validated mechanisms, such as genetic regulation, epigenetic regulation, and feedback regulation. However, it is still unclear whether R-SMADs or Co-SMAD can feedback regulate the TGF-β family signaling pathways in granulosa cells (GCs). In this study, we report a novel mechanism underlying the feedback regulation of TGF-β family signaling pathways, i.e., SMAD4, the only Co-SMAD, positive feedback activates the TGF-β family signaling pathways in GCs with a basal level of TGF-β ligands by interacting with the core promoters of its upstream receptors. Mechanistically, SMAD4 acts as a transcription factor, and feedback activates the transcription of its upstream receptors, including ACVR1B, BMPR2, and TGFBR2, of the canonical TGF-β signaling pathways by interacting with three coactivators (c-JUN, CREB1, and SP1), respectively. Notably, three different interaction modes between SMAD4 and coactivators were identified in SMAD4-mediated feedback regulation of upstream receptors through reciprocal ChIP assays. Our findings in the present study indicate for the first time that SMAD4 feedback activates the canonical TGF-β family signaling pathways in GCs, which improves and expands the regulatory mechanism, especially the feedback regulation modes of TGF-β family signaling pathways in ovarian GCs.


2021 ◽  
Vol 17 (8) ◽  
pp. e1009256
Author(s):  
René Dreos ◽  
Anna Sloutskin ◽  
Nati Malachi ◽  
Diana Ideses ◽  
Philipp Bucher ◽  
...  

Metazoan core promoters, which direct the initiation of transcription by RNA polymerase II (Pol II), may contain short sequence motifs termed core promoter elements/motifs (e.g. the TATA box, initiator (Inr) and downstream core promoter element (DPE)), which recruit Pol II via the general transcription machinery. The DPE was discovered and extensively characterized in Drosophila, where it is strictly dependent on both the presence of an Inr and the precise spacing from it. Since the Drosophila DPE is recognized by the human transcription machinery, it is most likely that some human promoters contain a downstream element that is similar, though not necessarily identical, to the Drosophila DPE. However, only a couple of human promoters were shown to contain a functional DPE, and attempts to computationally detect human DPE-containing promoters have mostly been unsuccessful. Using a newly-designed motif discovery strategy based on Expectation-Maximization probabilistic partitioning algorithms, we discovered preferred downstream positions (PDP) in human promoters that resemble the Drosophila DPE. Available chromatin accessibility footprints revealed that Drosophila and human Inr+DPE promoter classes are not only highly structured, but also similar to each other, particularly in the proximal downstream region. Clustering of the corresponding sequence motifs using a neighbor-joining algorithm strongly suggests that canonical Inr+DPE promoters could be common to metazoan species. Using reporter assays we demonstrate the contribution of the identified downstream positions to the function of multiple human promoters. Furthermore, we show that alteration of the spacing between the Inr and PDP by two nucleotides results in reduced promoter activity, suggesting a spacing dependency of the newly discovered human PDP on the Inr. Taken together, our strategy identified novel functional downstream positions within human core promoters, supporting the existence of DPE-like motifs in human promoters.


2021 ◽  
Vol 12 ◽  
Author(s):  
Federica Zinghirino ◽  
Xena Giada Pappalardo ◽  
Angela Messina ◽  
Giuseppe Nicosia ◽  
Vito De Pinto ◽  
...  

VDACs are pore-forming proteins, coating the mitochondrial outer membrane, and playing the role of main regulators for metabolites exchange between cytosol and mitochondria. In mammals, three isoforms have evolutionary originated, VDAC1, VDAC2, and VDAC3. Despite similarity in sequence and structure, evidence suggests different biological roles in normal and pathological conditions for each isoform. We compared Homo sapiens and Mus musculus VDAC genes and their regulatory elements. RNA-seq transcriptome analysis shows that VDAC isoforms are expressed in human and mouse tissues at different levels with a predominance of VDAC1 and VDAC2 over VDAC3, with the exception of reproductive system. Numerous transcript variants for each isoform suggest specific context-dependent regulatory mechanisms. Analysis of VDAC core promoters has highlighted that, both in a human and a mouse, VDAC genes show features of TATA-less ones. The level of CG methylation of the human VDAC genes revealed that VDAC1 promoter is less methylated than other two isoforms. We found that expression of VDAC genes is mainly regulated by transcription factors involved in controlling cell growth, proliferation and differentiation, apoptosis, and bioenergetic metabolism. A non-canonical initiation site termed “the TCT/TOP motif,” the target for translation regulation by the mTOR pathway, was identified in human VDAC2 and VDAC3 and in every murine VDACs promoter. In addition, specific TFBSs have been identified in each VDAC promoter, supporting the hypothesis that there is a partial functional divergence. These data corroborate our experimental results and reinforce the idea that gene regulation could be the key to understanding the evolutionary specialization of VDAC isoforms.


Sign in / Sign up

Export Citation Format

Share Document