dna transposons
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 25)

H-INDEX

25
(FIVE YEARS 3)

2022 ◽  
pp. gr.275655.121
Author(s):  
Ni-Chen Chang ◽  
Quirze Rovira ◽  
Jonathan N Wells ◽  
Cedric Feschotte ◽  
Juan M Vaquerizas

There is considerable interest in understanding the effect of transposable elements (TEs) on embryonic development. Studies in humans and mice are limited by the difficulty of working with mammalian embryos, and by the relative scarcity of active TEs in these organisms. Zebrafish is an outstanding model for the study of vertebrate development and over half of its genome consists of diverse TEs. However, zebrafish TEs remain poorly characterized. Here we describe the demography and genomic distribution of zebrafish TEs and their expression throughout embryogenesis using bulk and single-cell RNA sequencing data. These results reveal a highly dynamic genomic ecosystem comprising nearly 2,000 distinct TE families, which vary in copy number by four orders of magnitude and span a wide range of ages. Longer retroelements tend to be retained in intergenic regions, whilst short interspersed nuclear elements (SINEs) and DNA transposons are more frequently found nearby or within genes. Locus-specific mapping of TE expression reveals extensive TE transcription during development. While two thirds of TE transcripts are likely driven by nearby gene promoters, we still observe stage and tissue-specific expression patterns in self-regulated TEs. Long terminal repeat (LTR) retroelements are most transcriptionally active immediately following zygotic genome activation, whereas DNA transposons are enriched amongst transcripts expressed in later stages of development. Single-cell analysis reveals several endogenous retroviruses expressed in specific somatic cell lineages. Overall, our study provides a valuable resource for using zebrafish as a model to study the impact of TEs on vertebrate development.


Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1005
Author(s):  
Shasha Shi ◽  
Mikhail Puzakov ◽  
Zhongxia Guan ◽  
Kuilin Xiang ◽  
Mohamed Diaby ◽  
...  

Here, a new superfamily of IS630-Tc1-mariner (ITm) DNA transposons, termed Sailor, is identified, that is characterized by a DD82E catalytic domain and is distinct from all previously known superfamilies of the ITm group. Phylogenetic analyses revealed that Sailor forms a monophyletic clade with a more intimate link to the clades of Tc1/mariner and DD34E/Gambol. Sailor was detected in both prokaryotes and eukaryotes and invaded a total of 256 species across six kingdoms. Sailor is present in nine species of bacteria, two species of plantae, four species of protozoa, 23 species of Chromista, 12 species of Fungi and 206 species of animals. Moreover, Sailor is extensively distributed in invertebrates (a total of 206 species from six phyla) but is absent in vertebrates. Sailor transposons are 1.38–6.98 kb in total length and encoded transposases of ~676 aa flanked by TIRs with lengths between 18, 1362 and 4 bp (TATA) target-site duplications. Furthermore, our analysis provided strong evidence of Sailor transmissions from prokaryotes to eukaryotes and internal transmissions in both. These data update the classification of the ITm group and will contribute to the understanding of the evolution of ITm transposons and that of their hosts.


2021 ◽  
Author(s):  
Liang Xiao ◽  
Liuying Lu ◽  
Wendan Zeng ◽  
Xiaohong Shang ◽  
Sheng Cao ◽  
...  

Abstract BackgroundDuring newly formed polyploidy, one of the most intriguing aspects is that whole-genome duplication (WGD) increase the dosage of all coding and non-coding genes. However, the molecular implications of genome-dosage effects remain elusive.ResultsWe conducted integrated maps of methylomes and lncRNAomes in autotetraploid cassava (Manihot esculenta Crantz) and its donor parent, both of which were independently clonal propagated for three years. DNA methylation variation of transposable elements (TEs) was observed as widespread in autotetraploid cassava. The hypermethylation of DNA transposons in mCG and mCHH sites may be an effective way to suppress the expression of nearby PCGs in autotetraploid cassava, resulting in similar expression levels for most of PCGs between autotetraploid and diploid cassava. The decreased methylation levels of retrotransposons in mCHG and mCHH sites, which partly attributed to reduction methylation of Cypsy neighboring long intergenic noncoding RNAs in autotetraploid cassava, may be a mechanism that may suppress the expression levels of nearby lncRNA, leading to no significant differences in transcriptome alterations for major of lncRNAs from its diploid parent.ConclusionsThis work highlighted that WGD-induced DNA methylation variation in DNA transposons and retrotransposons may be as direct adaptive responses to dosage of all coding-genes and lncRNAs, respectively.


2021 ◽  
Author(s):  
Jack S. Gisby ◽  
Marco Catoni

Pack-TYPE transposable elements (TEs) are a group of non-autonomous DNA transposons found in plants. These elements can efficiently capture and shuffle coding DNA across the host genome, accelerating the evolution of genes. Despite their relevance for plant genome plasticity, the detection and study of Pack-TYPE TEs are challenging due to the high similarity these elements have with genes. Here, we produced an automated annotation procedure designed to study Pack-TYPE elements and used it to successfully annotate and analyse more than 4000 new Pack-TYPE TEs in the rice and maize genomes. Our analysis indicates that Pack-TYPE TEs are an abundant and heterogeneous group of elements. We found that these elements are associated with all main superfamilies of Class II DNA transposons in plants and likely share a similar mechanism to capture new chromosomal DNA sequences. Furthermore, we report examples of the direct contribution of these TEs to coding genes, suggesting a generalised and extensive role of Pack-TYPE TEs in plant genome evolution.


2021 ◽  
Author(s):  
Ni-Chen Chang ◽  
Quirze Rovira ◽  
Jonathan N Wells ◽  
Cédric Feschotte ◽  
Juan M Vaquerizas

There is considerable interest in understanding the effect of transposable elements (TEs) on embryonic development. Studies in humans and mice are limited by the difficulty of working with mammalian embryos, and by the relative scarcity of active TEs in these organisms. Zebrafish is an outstanding model for the study of vertebrate development and over half of its genome consists of diverse TEs. However, zebrafish TEs remain poorly characterized. Here we describe the demography and genomic distribution of zebrafish TEs and their expression throughout embryogenesis using bulk and single-cell RNA sequencing data. These results reveal a highly dynamic genomic ecosystem comprising nearly 2,000 distinct TE families, which vary in copy number by four orders of magnitude and span a wide range of ages. Longer retroelements tend to be retained in intergenic regions, whilst short interspersed nuclear elements (SINEs) and DNA transposons are more frequently found nearby or within genes. Locus-specific mapping of TE expression reveals extensive TE transcription during development. While two thirds of TE transcripts are likely driven by nearby gene promoters, we still observe stage and tissue-specific expression patterns in self-regulated TEs. Long terminal repeat (LTR) retroelements are most transcriptionally active immediately following zygotic genome activation, whereas DNA transposons are enriched amongst transcripts expressed in later stages of development. Single-cell analysis reveals several endogenous retroviruses expressed in specific somatic cell lineages. Overall, our study provides an important resource for using zebrafish as a model to study the impact of TEs on vertebrate development.


2020 ◽  
Author(s):  
Mats E Pettersson ◽  
Patric Jern

Abstract Retroviruses have infiltrated vertebrate germlines for millions of years as inherited endogenous retroviruses (ERVs). Mammalian genomes host large numbers of ERVs and transposable elements (TEs), including retrotransposons and DNA transposons, that contribute to genomic innovation and evolution as coopted genes and regulators of diverse functions. To explore features distinguishing coopted ERVs and TEs from other integrations, we focus on the potential role of ZBED6 and repeated ERV domestication as repurposed Syncytin genes. The placental mammal-specific ZBED6 is a DNA transposon-derived transcription regulator and we demonstrate that its binding motifs are associated with distinct Syncytins, and that ZBED6 binding motifs are 2-to-3 fold more frequent in ERVs than in flanking DNA. Our observations suggest that ZBED6 could contribute an extended regulatory role of genomic expression, utilizing ERVs as platforms for genomic innovation and evolution.


2020 ◽  
Vol 12 (11) ◽  
pp. 2139-2152
Author(s):  
Lukas Weilguny ◽  
Christos Vlachos ◽  
Divya Selvaraju ◽  
Robert Kofler

Abstract The P-element, one of the best understood eukaryotic transposable elements, spread in natural Drosophila melanogaster populations in the last century. It invaded American populations first and later spread to the Old World. Inferring this invasion route was made possible by a unique resource available in D. melanogaster: Many strains sampled from different locations over the course of the last century. Here, we test the hypothesis that the invasion route of the P-element may be reconstructed from extant population samples using internal deletions (IDs) as markers. These IDs arise at a high rate when DNA transposons, such as the P-element, are active. We suggest that inferring invasion routes is possible as: 1) the fraction of IDs increases in successively invaded populations, which also explains the striking differences in the ID content between American and European populations, and 2) successively invaded populations end up with similar sets of IDs. This approach allowed us to reconstruct the invasion route of the P-element with reasonable accuracy. Our approach also sheds light on the unknown timing of the invasion in African populations: We suggest that African populations were invaded after American but before European populations. Simulations of TE invasions in spatially distributed populations confirm that IDs may allow us to infer invasion routes. Our approach might be applicable to other DNA transposons in different host species.


Sign in / Sign up

Export Citation Format

Share Document