developmental genes
Recently Published Documents


TOTAL DOCUMENTS

271
(FIVE YEARS 54)

H-INDEX

44
(FIVE YEARS 4)

Author(s):  
Pedro Mariano‐Martins ◽  
Raquel Dietsche Monfardini ◽  
Nancy Lo‐Man‐Hung ◽  
Tatiana Teixeira Torres

eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Graham JM Hickey ◽  
Candice L Wike ◽  
Xichen Nie ◽  
Yixuan Guo ◽  
Mengyao Tan ◽  
...  

Vertebrate embryos achieve developmental competency during zygotic genome activation (ZGA) by establishing chromatin states that silence yet poise developmental genes for subsequent lineage-specific activation. Here, we reveal the order of chromatin states in establishing developmental gene poising in preZGA zebrafish embryos. Poising is established at promoters and enhancers that initially contain open/permissive chromatin with 'Placeholder' nucleosomes (bearing H2A.Z, H3K4me1, and H3K27ac), and DNA hypomethylation. Silencing is initiated by the recruitment of Polycomb Repressive Complex 1 (PRC1), and H2Aub1 deposition by catalytic Rnf2 during preZGA and ZGA stages. During postZGA, H2Aub1 enables Aebp2-containing PRC2 recruitment and H3K27me3 deposition. Notably, preventing H2Aub1 (via Rnf2 inhibition) eliminates recruitment of Aebp2-PRC2 and H3K27me3, and elicits transcriptional upregulation of certain developmental genes during ZGA. However, upregulation is independent of H3K27me3 - establishing H2Aub1 as the critical silencing modification at ZGA. Taken together, we reveal the logic and mechanism for establishing poised/silent developmental genes in early vertebrate embryos.


2021 ◽  
Author(s):  
Eliana F. Torres-Zelada ◽  
Smitha George ◽  
Hannah R. Blum ◽  
Vikki M. Weake

The histone acetyltransferase Gcn5 is critical for gene expression and development. In Drosophila, Gcn5 is part of four complexes (SAGA, ATAC, CHAT, and ADA) that are essential for fly viability and have key roles in regulating gene expression. Here, we show that while the SAGA, ADA, and CHAT complexes play redundant roles in embryonic gene expression, the insect-specific CHAT complex uniquely regulates expression of a subset of developmental genes. We also identify a substantial decrease in histone acetylation in chiffon mutant embryos that exceeds that observed in ada2b, suggesting broader roles for Chiffon in regulating histone acetylation outside of the Gcn5 complexes. The chiffon gene encodes two independent polypeptides that nucleate formation of either the CHAT or Dbf4-dependent kinase (DDK) complexes. DDK includes the cell cycle kinase Cdc7, which is necessary for maternally-driven DNA replication in the embryo. We identify a temporal switch between the expression of these chiffon gene products during a short window during the early nuclear cycles in embryos that correlates with the onset of zygotic genome activation, suggesting a potential role for CHAT in this process.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Raquel Rouco ◽  
Olimpia Bompadre ◽  
Antonella Rauseo ◽  
Olivier Fazio ◽  
Rodrigue Peraldi ◽  
...  

AbstractDevelopmental genes are frequently controlled by multiple enhancers sharing similar specificities. As a result, deletions of such regulatory elements have often failed to reveal their full function. Here, we use the Pitx1 testbed locus to characterize in detail the regulatory and cellular identity alterations following the deletion of one of its enhancers (Pen). By combining single cell transcriptomics and an in-embryo cell tracing approach, we observe an increased fraction of Pitx1 non/low-expressing cells and a decreased fraction of Pitx1 high-expressing cells. We find that the over-representation of Pitx1 non/low-expressing cells originates from a failure of the Pitx1 locus to coordinate enhancer activities and 3D chromatin changes. This locus mis-activation induces a localized heterochrony and a concurrent loss of irregular connective tissue, eventually leading to a clubfoot phenotype. This data suggests that, in some cases, redundant enhancers may be used to locally enforce a robust activation of their host regulatory landscapes.


2021 ◽  
Vol 22 (22) ◽  
pp. 12105
Author(s):  
Yating Du ◽  
Shiqi Luo ◽  
Xin Zhou

Honey bees provide essential pollination services to the terrestrial ecosystem and produce important agricultural products. As a beneficial lactic acid bacterium, Enterococcus faecium is often supplied as a probiotic for honey bees and other animals. However, the underlying mechanisms of its actions and possible safety risks are not well understood. We present the first complete genome sequence of E. faecium isolated from the honey bee gut using nanopore sequencing, and investigate the effects and mechanisms of interactions between E. faecium and honey bees via transcriptome and miRNA analysis. E. faecium colonization increased honey bee gut weight. Transcriptome analysis showed that developmental genes were up-regulated. In accordance, the target genes of the down-regulated miRNAs were enriched in developmental pathways. We describe how E. faecium increases honey bee gut weight at the transcriptional and post-transcriptional levels, and add insights about how miRNAs mediate host and bacteria interactions.


Cell Reports ◽  
2021 ◽  
Vol 37 (3) ◽  
pp. 109843
Author(s):  
Vibhu Sahni ◽  
Sara J. Shnider ◽  
Denis Jabaudon ◽  
Janet H.T. Song ◽  
Yasuhiro Itoh ◽  
...  

Genetics ◽  
2021 ◽  
Author(s):  
Lily Li ◽  
Rachel Waymack ◽  
Mario Gad ◽  
Zeba Wunderlich

Abstract Proper development depends on precise spatiotemporal gene expression patterns. Most developmental genes are regulated by multiple enhancers and often by multiple core promoters that generate similar transcripts. We hypothesize that multiple promoters may be required either because enhancers prefer a specific promoter or because multiple promoters serve as a redundancy mechanism. To test these hypotheses, we studied the expression of the knirps locus in the early Drosophila melanogaster embryo, which is mediated by multiple enhancers and core promoters. We found that one of these promoters resembles a typical “sharp” developmental promoter, while the other resembles a “broad” promoter usually associated with housekeeping genes. Using synthetic reporter constructs, we found that some, but not all, enhancers in the locus show a preference for one promoter, indicating that promoters provide both redundancy and specificity. By analyzing the reporter dynamics, we identified specific burst properties during the transcription process, namely burst size and frequency, that are most strongly tuned by the combination of promoter and enhancer. Using locus-sized reporters, we discovered that enhancers with no promoter preference in a synthetic setting have a preference in the locus context. Our results suggest that the presence of multiple promoters in a locus is due both to enhancer preference and a need for redundancy and that “broad” promoters with dispersed transcription start sites are common among developmental genes. They also imply that it can be difficult to extrapolate expression measurements from synthetic reporters to the locus context, where other variables shape a gene’s overall expression pattern.


Author(s):  
Anton Pirogov ◽  
Peter Pfaffelhuber ◽  
Angelika Börsch-Haubold ◽  
Bernhard Haubold

Sign in / Sign up

Export Citation Format

Share Document