methane number
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 18)

H-INDEX

8
(FIVE YEARS 3)

Author(s):  
Juan Pablo Gomez Montoya ◽  
Andres Amell

Abstract A novel methodology is proposed to evaluate fuel´s performance in spark ignition (SI) engines based on the fuel´s energy quality and availability to produce work. Experiments used a diesel engine with a high compression ratio (CR), modified by SI operation, and using interchangeable pistons. The interchangeable pistons allowed for the generation of varying degrees of turbulence during combustion, ranging from middle to high turbulence. The generating efficiency (ηq), and the maximum electrical energy (EEmax) were measured at the knocking threshold (KT). A cooperative fuel research (CFR) engine operating at the KT was also used to measure the methane number (MN), and critical compression ratio (CCR) for gaseous fuels. Fuels with MNs ranging from 37 to 140 were used: two biogases, methane, propane, and five fuel blends of biogas with methane/propane and hydrogen. Results from both engines are linked at the KT to determine correlations between fuel´s physicochemical properties and the knocking phenomenon. Certain correlations between knocking and fuel properties were experimentally determined: energy density (ED), laminar flame speed (SL), adiabatic flame temperature (Tad), heat capacity ratio (γ), and hydrogen/carbon (H/C) ratio. Based on the results, a mathematical methodology for estimating EEmax and ηq in terms of ED, SL, Tad, γ, H/C, and MN is presented. These equations were derived from the classical maximum thermal efficiency for SI engines given by the Otto cycle efficiency (ηOtto). Fuels with MN > 97 got higher EEmax, and ηq than propane, and diesel fuels.


2021 ◽  
Vol 251 ◽  
pp. 730-737
Author(s):  
Otari Didmanidze ◽  
Aleksandr Afanasev ◽  
Ramil Khakimov

The natural gas usage as a vehicle fuel in the mining industry is one of the priority tasks of the state. The article pays special attention to the component composition of natural gas from the point of view of its thermal efficiency during combustion in the combustion chamber of a power plant on a heavy-duty vehicle in difficult quarry conditions. For this, domestic and foreign methods for determining the main indicator characterizing the knock resistance of fuel in the combustion process – the methane number – are considered. Improvement of technical and economic indicators will be carried out by changing the composition of the gas mixture based on methane to fit the design features of the gas power plant, the methane number will be the determining indicator. A theoretical analysis of the influence of the methane number on such engine parameters as the compression ratio and the maximum speed of the flame front propagation in the second phase of combustion in the engine cylinder, expressed through the angle of rotation of the crankshaft, is presented. Based on the results of theoretical and experimental studies, the dependences of the influence of the methane number on the efficiency of the working process of the engine and its external speed characteristic were obtained.


2021 ◽  
Author(s):  
Dario-Vincenzo Di Modica ◽  
Jelto Frerichs ◽  
Christian Meier ◽  
Peter Eilts ◽  
Bo Shu

2021 ◽  
Vol 25 (1) ◽  
pp. 688-699
Author(s):  
Eduard Latõšov ◽  
Ieva Pakere ◽  
Lina Murauskaite ◽  
Anna Volkova

Abstract The aim of the article is to determine what amount of hydrogen in %mol can be transferred/stored in the Estonian, Latvian and Lithuanian grid gas networks, based on the limitations of chemical and physical requirements, technical requirements of the gas network, and quality requirements. The main characteristics for the analysis of mixtures of hydrogen and natural gas are the Wobbe Index, relative density, methane number, and calorific value. The calculation of the effects of hydrogen blending on the above main characteristics of a real grid gas is based on the principles described in ISO 6976:2016 and the distribution of the grid gas mole fraction components from the grid gas quality reports. The Wärtsila methane number calculator was used to illustrate the effects of hydrogen blending on the methane number of the grid gas. The calculation results show that the maximum hydrogen content in the grid gas (hydrogen and natural gas mix), depending on the grid gas quality parameters (methane number, gross heat of combustion, specific gravity, and the Wobbe Index), is in the range of 5–23 %mol H2. The minimum hydrogen content (5 %mol H2) is limited by specific gravity (>0.55). The next limitation is at 12 %mol H2 and is related to the gross heat of combustion (>9.69 kWh/m3). It is advisable to explore the readiness of gas grids and consumers in Estonia, Latvia and Lithuania before switching to higher hydrogen blend levels. If the applicability and safety of hydrogen blends above 5 %mol is approved, then it is necessary to analyse the possible reduction of the minimum requirements for the quality of the grid gas and evaluate the associated risks (primarily related to specific gravity).


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5060
Author(s):  
Szymon Kuczyński ◽  
Mariusz Łaciak ◽  
Adam Szurlej ◽  
Tomasz Włodek

The one of main quality requirements of natural gas as an engine fuel is the methane number (MN). This parameter indicates the fuel’s capability to avoid knocking in the engine. A higher MN value indicates a better natural gas quality for gas engines. Natural gas with higher methane content tends to have higher MN value. This study presents analysis of deviation of liquefied natural gas (LNG) composition and its impact on LNG quality as an engine fuel. The analysis of higher hydrocarbons and nitrogen content impact on LNG parameters was considered for several samples of LNG compositions. Most engine manufacturers want to set a new, lower limit value for methane number at 80. This fact causes significant restrictions on the range of variability in the composition of liquefied natural gas. The goal of this study was to determine the combination of the limit content of individual components in liquefied natural gas to achieve the strict methane number criterion (MN > 80). To fulfill this criterion, the methane content in LNG would have to exceed 93.7%mol, and a significant part of the LNG available on the market does not meet these requirements. The analysis also indicated that the methane number cannot be the only qualitative criterion, as its variability depends strongly on the LNG composition. To determine the applicability of LNG as an engine fuel, the simultaneous application of the methane number and Wobbe index criteria was proposed.


Author(s):  
Diego Bestel ◽  
Scott Bayliff ◽  
Hui Xu ◽  
Anthony Marchese ◽  
Daniel Olsen ◽  
...  

2020 ◽  
pp. 146808742094613
Author(s):  
Paolo Gobbato ◽  
Massimo Masi ◽  
Luigi De Simio ◽  
Sabato Iannaccone

An original method for formulating surrogate fuels from actual syngas mixtures is presented and formalised. The method is the first example in the scientific literature of a rather complete tool for planning and setting up a laboratory syngas-fuelled engine test when some components of the syngas mixture are not available. Basically, the method allows a map to be built that provides the composition for a surrogate fuel once the composition of a syngas mixture is assigned, the components of a surrogate fuel are selected and the equivalence parameters are defined. The laminar flame speed, the energy density of the fuel–air mixture and the methane number are identified as equivalence parameters in the study. In particular, the proper laminar flame speed and energy density ensure that an engine fuelled by the surrogate mixture produces the same indicated power as it would when fuelled by the original syngas. Instead, the methane number allows for checking the fact that the tendency of the engine to knock is the same or greater than the knock tendency during syngas operation. In this article, the method is used to determine the hydrogen–methane–nitrogen mixtures corresponding to six five-component syngas mixtures, resulting from actual gasification processes. The laminar flame speed and methane number of each syngas mixture are estimated by means of simple original models aimed at either improving the predicting capabilities of existing models or allowing for a prompt application of the procedure. The results show that four of the six surrogate fuels are equally or more knock-prone than the original syngas mixtures, whereas only one of the two remaining surrogate fuels likely imposes a retardation of the spark advance in the final setup of the engine for actual syngas operation.


Sign in / Sign up

Export Citation Format

Share Document