small protein
Recently Published Documents


TOTAL DOCUMENTS

380
(FIVE YEARS 89)

H-INDEX

44
(FIVE YEARS 7)

2021 ◽  
Vol 22 (22) ◽  
pp. 12213
Author(s):  
Haruka Yamaguchi ◽  
Jotaro On ◽  
Takao Morita ◽  
Takamasa Suzuki ◽  
Yasuo Okada ◽  
...  

Near-infrared photoimmunotherapy (NIR-PIT) is a promising cancer therapy based on a monoclonal antibody conjugated to a photosensitizer (IR700Dye) that is activated by near-infrared light irradiation. We previously reported on the use of NIR-PIT with a small protein mimetic, the Affibody molecule (6–7 kDa), instead of a monoclonal antibody. In this study, we investigated a combination of NIR-PIT for HER2-positive breast cancer cells (SK-BR3, MDA-MB361, and JIMT1) with HER2 Affibody-IR700Dye conjugate and trastuzumab-IR700Dye conjugate. HER2 Affibody and trastuzumab target different epitopes of the HER2 protein and do not compete. In vitro, the combination of NIR-PIT using both HER2 Affibody-IR700Dye conjugate and trastuzumab-IR700Dye conjugate induced necrotic cell death of HER2-positive breast cancer cells without damage to HER2-negative breast cancer cells (MCF7). It was more efficient than NIR-PIT using either the HER2 Affibody-IR700Dye conjugate alone or the trastuzumab-IR700Dye conjugate alone. Additionally, this combination of NIR-PIT was significantly effective against HER2 low-expressing cancer cells, trastuzumab-resistant cells (JIMT1), and brain metastatic cells of breast cancer (MDA-MB361). Furthermore, in vivo imaging exhibited the strong fluorescence intensity of both HER2 Affibody-IR700Dye conjugates and trastuzumab-Alexa488 conjugates in HER2-positive tumor, indicating that both HER2 Affibody and trastuzumab specifically bind to HER2-positive tumors without competing with each other. In conclusion, the combination of NIR-PIT using both HER2 Affibody and trastuzumab expands the targeting scope of NIR-PIT for HER2-positive breast cancer.


2021 ◽  
Author(s):  
Christian H. Ahrens ◽  
Joseph T. Wade ◽  
Matthew M. Champion ◽  
Julian D. Langer

Small proteins of up to ∼50 amino acids are an abundant class of biomolecules across all domains of life. Yet, due to the challenges inherent in their size, they are often missed in genome annotations, and are difficult to identify and characterize using standard experimental approaches. Consequently, we still know few small proteins even in well-studied prokaryotic model organisms. Mass spectrometry (MS) has great potential for the discovery, validation, and functional characterization of small proteins. However, standard MS approaches are poorly suited to the identification of both known and novel small proteins due to limitations at each step of a typical proteomics workflow, i.e., sample preparation, protease digestion, liquid chromatography, MS data acquisition, and data analysis. Here, we outline the major MS-based workflows and bioinformatic pipelines used for small protein discovery and validation. Special emphasis is placed on highlighting the adjustments required to improve detection and data quality for small proteins. We discuss both the unbiased detection of small proteins and the targeted analysis of small proteins of interest. Finally, we provide guidelines to prioritize novel small proteins, and an outlook on methods with particular potential to further improve comprehensive discovery and characterization of small proteins. IMPORTANCE Small proteins of up to ∼50 amino acids play important physiological roles across all domains of life. Mass spectrometry is an ideal approach to detect and characterize small proteins, but many aspects of standard mass spectrometry workflows are biased against small proteins due to their size. Here, we highlight applications of mass spectrometry to study small proteins, emphasizing modifications to standard workflows to optimize the detection of small proteins.


2021 ◽  
Vol 220 (11) ◽  
Author(s):  
Julian M. Carosi ◽  
Thanh N. Nguyen ◽  
Michael Lazarou ◽  
Sharad Kumar ◽  
Timothy J. Sargeant

The ATG8 family of proteins regulates autophagy in a variety of ways. Recently, ATG8s were demonstrated to conjugate directly to cellular proteins in a process termed “ATG8ylation,” which is amplified by mitochondrial damage and antagonized by ATG4 proteases. ATG8s may have an emerging role as small protein modifiers.


2021 ◽  
Author(s):  
Margarita A. Kurnaeva ◽  
Arthur O. Zalevsky ◽  
Eugene A. Arifulin ◽  
Olga M. Lisitsyna ◽  
Anna V. Tvorogova ◽  
...  

During evolution, viruses had to adapt to an increasingly complex environment of eukaryotic cells. Viral proteins that need to enter the cell nucleus or associate with nucleoli possess nuclear localization signals (NLSs) and nucleolar localization signals (NoLSs) for nuclear and nucleolar accumulation, respectively. As viral proteins are relatively small, acquisition of novel sequences seems to be a more complicated task for viruses than for eukaryotes. Here, we carried out a comprehensive analysis of the basic domain (BD) of HIV-1 Tat to show how viral proteins might evolve with NLSs and NoLSs without an increase in protein size. The HIV-1 Tat BD is involved in several functions, the most important being the transactivation of viral transcription. The BD also functions as an NLS, although it is substantially longer than a typical NLS. It seems that different regions in the BD could function as NLSs due to its enrichment with positively charged amino acids. Additionally, the high positive net charge inevitably causes the BD to function as an NoLS through a charge-specific mechanism. The integration of NLSs and NoLSs into functional domains enriched with positively charged amino acids might be a mechanism that allows the condensation of different functional sequences in small protein regions and, as a result, to reduce protein size, influencing the origin and evolution of NLSs and NoLSs in viruses. IMPORTANCE Here, we investigated the molecular mechanism of NLS and NoLS integration into the basic domain of HIV-1 Tat ( 49 RKKRRQRRR 57 ), and found that these two supplementary functions (i.e., function of NLS and NoLS) are embedded in the basic domain amino acid sequence. The integration of NLSs and NoLSs into functional domains of viral proteins enriched with positively charged amino acids is a mechanism that allows the concentration of different functions within small protein regions. Integration of NLS and NoLS into functional protein domains might have influenced the viral evolution, as this could prevent an increase in the protein size.


2021 ◽  
Author(s):  
Bikash Bogati ◽  
Nicholas Wadsworth ◽  
Francisco Barrera ◽  
Elizabeth M. Fozo

Type I toxin-antitoxin systems consist of a small protein (under 60 amino acids) whose overproduction can result in cell growth stasis or death, and a small RNA that represses translation of the toxin mRNA. Despite their potential toxicity, type I toxin proteins are increasingly linked to improved survival of bacteria in stressful environments and antibiotic persistence. While the interaction of toxin mRNAs with their cognate antitoxin sRNAs in some systems are well characterized, additional translational control of many toxins and their biological roles are not well understood. Using an ectopic overexpression system, we show that the efficient translation of a chromosomally encoded type I toxin, ZorO, requires mRNA processing of its long 5’ untranslated region (UTR; Δ28 UTR). The severity of ZorO induced toxicity on growth inhibition, membrane depolarization, and ATP depletion were significantly increased if expressed from the Δ28 UTR versus the full-length UTR. ZorO did not form large pores as evident via a liposomal leakage assay, in vivo morphological analyses, and measurement of ATP loss. Further, increasing the copy number of the entire zor-orz locus significantly improved growth of bacterial cells in the presence of kanamycin and increased the minimum inhibitory concentration against kanamycin and gentamycin; however, no such benefit was observed against other antibiotics. This supports a role for the zor-orz locus as a protective measure against specific stress agents and is likely not part of a general stress response mechanism. Combined, these data shed more insights into the possible native functions for type I toxin proteins. IMPORTANCE Bacterial species can harbor gene pairs known as type I toxin-antitoxin systems where one gene encodes a small protein that is toxic to the bacteria producing it and a second gene that encodes a small RNA antitoxin to prevent toxicity. While artificial overproduction of type I toxin proteins can lead to cell growth inhibition and cell lysis, the endogenous translation of type I toxins appears to be tightly regulated. Here, we show translational regulation controls production of the ZorO type I toxin and prevents subsequent negative effects on the cell. Further, we demonstrate a role for zorO and its cognate antitoxin in improved growth of E. coli in the presence of aminoglycoside antibiotics.


Sign in / Sign up

Export Citation Format

Share Document