zinc finger proteins
Recently Published Documents


TOTAL DOCUMENTS

477
(FIVE YEARS 51)

H-INDEX

73
(FIVE YEARS 4)

2022 ◽  
Vol 10 (1) ◽  
Author(s):  
Xinxin Li ◽  
Mengzhen Han ◽  
Hongwei Zhang ◽  
Furong Liu ◽  
Yonglong Pan ◽  
...  

AbstractZinc finger proteins are transcription factors with the finger domain, which plays a significant role in gene regulation. As the largest family of transcription factors in the human genome, zinc finger (ZNF) proteins are characterized by their different DNA binding motifs, such as C2H2 and Gag knuckle. Different kinds of zinc finger motifs exhibit a wide variety of biological functions. Zinc finger proteins have been reported in various diseases, especially in several cancers. Hepatocellular carcinoma (HCC) is the third leading cause of cancer-associated death worldwide, especially in China. Most of HCC patients have suffered from hepatitis B virus (HBV) and hepatitis C virus (HCV) injection for a long time. Although the surgical operation of HCC has been extremely developed, the prognosis of HCC is still very poor, and the underlying mechanisms in HCC tumorigenesis are still not completely understood. Here, we summarize multiple functions and recent research of zinc finger proteins in HCC tumorigenesis and progression. We also discuss the significance of zinc finger proteins in HCC diagnosis and prognostic evaluation.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7576
Author(s):  
Anne Susemihl ◽  
Felix Nagel ◽  
Piotr Grabarczyk ◽  
Christian A. Schmidt ◽  
Mihaela Delcea

Zinc finger proteins play pivotal roles in health and disease and exert critical functions in various cellular processes. A majority of zinc finger proteins bind DNA and act as transcription factors. B-cell lymphoma/leukemia 11B (BCL11B) represents one member of the large family of zinc finger proteins. The N-terminal domain of BCL11B was shown to be crucial for BCL11B to exert its proper function by homodimerization. Here, we describe an easy and fast preparation protocol to yield the fluorescently tagged protein of the recombinant N-terminal BCL11B zinc finger domain (BCL11B42-94) for in vitro studies. First, we expressed fluorescently tagged BCL11B42-94 in E. coli and described the subsequent purification utilizing immobilized metal ion affinity chromatography to achieve very high yields of a purified fusion protein of 200 mg/L culture. We proceeded with characterizing the atypical zinc finger domain using circular dichroism and size exclusion chromatography. Validation of the functional fluorescent pair CyPet-/EYFP-BCL11B42-94 was achieved with Förster resonance energy transfer. Our protocol can be utilized to study other zinc finger domains to expand the knowledge in this field.


2021 ◽  
Vol 15 ◽  
Author(s):  
Siyuan Bu ◽  
Yihan Lv ◽  
Yusheng Liu ◽  
Sen Qiao ◽  
Hongmei Wang

Zinc finger proteins (ZNF) are among the most abundant proteins in eukaryotic genomes. It contains several zinc finger domains that can selectively bind to certain DNA or RNA and associate with proteins, therefore, ZNF can regulate gene expression at the transcriptional and translational levels. In terms of neurological diseases, numerous studies have shown that many ZNF are associated with neurological diseases. The purpose of this review is to summarize the types and roles of ZNF in neuropsychiatric disorders. We will describe the structure and classification of ZNF, then focus on the pathophysiological role of ZNF in neuro-related diseases and summarize the mechanism of action of ZNF in neuro-related diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Guoliang Han ◽  
Yuxia Li ◽  
Ziqi Qiao ◽  
Chengfeng Wang ◽  
Yang Zhao ◽  
...  

Plant epidermal cells, such as trichomes, root hairs, salt glands, and stomata, play pivotal roles in the growth, development, and environmental adaptation of terrestrial plants. Cell fate determination, differentiation, and the formation of epidermal structures represent basic developmental processes in multicellular organisms. Increasing evidence indicates that C2H2 zinc finger proteins play important roles in regulating the development of epidermal structures in plants and plant adaptation to unfavorable environments. Here, we systematically summarize the molecular mechanism underlying the roles of C2H2 zinc finger proteins in controlling epidermal cell formation in plants, with an emphasis on trichomes, root hairs, and salt glands and their roles in plant adaptation to environmental stress. In addition, we discuss the possible roles of homologous C2H2 zinc finger proteins in trichome development in non-halophytes and salt gland development in halophytes based on bioinformatic analysis. This review provides a foundation for further study of epidermal cell development and abiotic stress responses in plants.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1456
Author(s):  
Huafeng Wu ◽  
Xia Wang ◽  
Yinzhu Cao ◽  
Haiyuan Zhang ◽  
Run Hua ◽  
...  

Zinc-finger proteins are important transcription factors in plants, responding to adversity and regulating the growth and development of plants. However, the roles of the BBX gene family of zinc-finger proteins in wintersweet (Chimonanthus praecox) have yet to be elucidated. In this study, a group IV subfamily BBX gene, CpBBX19, was identified and isolated from wintersweet. Quantitative real-time PCR (qRT-PCR) analyses revealed that CpBBX19 was expressed in all tissues and that expression was highest in cotyledons and inner petals. CpBBX19 was also expressed in all flower development stages, with the highest expression detected in early initiating bloom, followed by late initiating bloom and bloom. In addition, the expression of CpBBX19 was induced by different abiotic stress (cold, heat, NaCl, and drought) and hormone (ABA and MeJA) treatments. Heterologous expression of CpBBX19 in Arabidopsis thaliana (Arabidopsis) enhanced the tolerance of this plant to salt and drought stress as electrolyte leakage and malondialdehyde (MDA) concentrations in transgenic Arabidopsis after stress treatments were significantly lower than those in wild-type (WT) plants. In conclusion, this research demonstrated that CpBBX19 plays a role in the abiotic stress tolerance of wintersweet. These findings lay a foundation for future studies on the BBX gene family of wintersweet and enrich understanding of the molecular mechanism of stress resistance in wintersweet.


2021 ◽  
Vol 54 (3) ◽  
Author(s):  
Faiza Mir ◽  
Sajida Bibi ◽  
Noreen Asim ◽  
Asad Jan

Author(s):  
Ren Li ◽  
Xiaotian Wang ◽  
Shuaibin Zhang ◽  
Xin Liu ◽  
Zhen Zhou ◽  
...  

2021 ◽  
Author(s):  
Yang Liu ◽  
Ning Zhao ◽  
Masato T. Kanemaki ◽  
Yotaro Yamamoto ◽  
Yoshifusa Sadamura ◽  
...  

2021 ◽  
Author(s):  
Che Julius Ngwa ◽  
Afia Farrukh ◽  
Gabriele Pradel

Sign in / Sign up

Export Citation Format

Share Document