host rocks
Recently Published Documents


TOTAL DOCUMENTS

939
(FIVE YEARS 360)

H-INDEX

34
(FIVE YEARS 6)

2022 ◽  
Vol 117 (2) ◽  
pp. 485-494
Author(s):  
Tobias U. Schlegel ◽  
Renee Birchall ◽  
Tina D. Shelton ◽  
James R. Austin

Abstract Iron oxide copper-gold (IOCG) deposits form in spatial and genetic relation to hydrothermal iron oxide-alkali-calcic-hydrolytic alteration and thus show a mappable zonation of mineral assemblages toward the orebody. The mineral zonation of a breccia matrix-hosted orebody is efficiently mapped by regularly spaced samples analyzed by the scanning electron microscopy-integrated mineral analyzer technique. The method results in quantitative estimates of the mineralogy and allows the reliable recognition of characteristic alteration as well as mineralization-related mineral assemblages from detailed mineral maps. The Ernest Henry deposit is located in the Cloncurry district of Queensland and is one of Australia’s significant IOCG deposits. It is known for its association of K-feldspar altered clasts with iron oxides and chalcopyrite in the breccia matrix. Our mineral mapping approach shows that the hydrothermal alteration resulted in a characteristic zonation of minerals radiating outward from the pipe-shaped orebody. The mineral zonation is the result of a sequence of sodic alteration followed by potassic alteration, brecciation, and, finally, by hydrolytic (acid) alteration. The hydrolytic alteration primarily affected the breccia matrix and was related to economic mineralization. Alteration halos of individual minerals such as pyrite and apatite extend dozens to hundreds of meters beyond the limits of the orebody into the host rocks. Likewise, the Fe-Mg ratio in hydrothermal chlorites changes systematically with respect to their distance from the orebody. Geochemical data obtained from portable X-ray fluorescence (p-XRF) and petrophysical data acquired from a magnetic susceptibility meter and a gamma-ray spectrometer support the mineralogical data and help to accurately identify mineral halos in rocks surrounding the ore zone. Specifically, the combination of mineralogical data with multielement data such as P, Mn, As, P, and U obtained from p-XRF and positive U anomalies from radiometric measurements has potential to direct an exploration program toward higher Cu-Au grades.


2022 ◽  
Vol 369 ◽  
pp. 106519
Author(s):  
Tao Wu ◽  
Xuan-Ce Wang ◽  
Simon A. Wilde ◽  
Qiu-Li Li ◽  
Chong-Jin Pang ◽  
...  
Keyword(s):  

MAUSAM ◽  
2022 ◽  
Vol 53 (1) ◽  
pp. 87-98
Author(s):  
D. HIMABINDU ◽  
G. RAMADASS

With the increasing resolution of satellite sensors, it is possible to fruitfully exploit the special advantages of image analysis for a wide range of geological environments. With this view, a LISS-III and PAN merged image of the 1600 acre (approximately 6.5 sq km) Osmania University (OU) campus taken from IRS-ID in the month of May (a fairly representative month in terms of minimum annual drainage/vegetation cover) was acquired. The image was then digitally processed and visually interpreted for potential groundwater resource regions. Since occurrence of groundwater in crystalline rocks, the host rocks for the entire Hyderabad region, is generally associated with secondary porosity, the accent was on determining and establishing lineaments of considerable surface extent. This was then augmented with maps of subsurface features as obtained from geophysical studies for the southern part of 0 U campus and available bore well/open well information. Subsequently, information from the three sources was integrated for a better understanding of the geological situation and the interrelationship of its various constituents to determine possible locations of groundwater resources.   The significant findings comprised the identification of three major dykes, two running E-W and the third running NE-SW. A major N-S linear exposure of granitic rocks, as also several criss-crossing fractures in the southern side of the campus, along with the prevailing drainage pattern for the entire campus area were mapped. Based on these findings and supporting geophysical/hydrogeological data, a geological/lithological map of Osmania University campus was prepared and prospective groundwater zones have been identified.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 12
Author(s):  
Yury O. Redin ◽  
Anna A. Redina ◽  
Viktor P. Mokrushnikov ◽  
Alexandra V. Malyutina ◽  
Vladislav F. Dultsev

The Kultuma deposit is among the largest and most representative Au–Cu–Fe–skarn deposits situated in Eastern Transbaikalia. However, its genetic classification is still a controversial issue. The deposit is confined to the similarly named massif of the Shakhtama complex, which is composed mainly of quartz monzodiorite-porphyry and second-phase monzodiorite-porphyry. The magmatic rocks are characterized by a low Fe2O3/FeO ratio, low magnetic susceptibility and belong to meta-aluminous, magnesian high-potassic calc-alkalic reduced granitoids of type I. The results of 40Ar-39Ar and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb dating showed that the formation of magmatic rocks proceeded during the Late Jurassic time: 161.5–156.8 Ma. Relatively low Ce/Ce*, Eu/Eu* and Dy/Yb ratios in the zircons indicate that the studied magmatic rocks were formed under relatively reduced conditions and initially contained a rather low amount of magmatic water. A mineralogical–geochemical investigation allowed us to outline five main stages (prograde skarn, retrograde skarn, potassic alteration, propylitic (hydrosilicate) alteration and late low-temperature alteration) of mineral formation, each of them being characterized by a definite paragenetic mineral association. The major iron, gold and copper ores were formed at the stage of retrograde skarn and potassic alteration, while the formation of polymetallic ores proceeded at the stage of propylitic alteration. The obtained timing of the formation of retrograde skarn (156.3 Ma) and magmatic rocks of the Shakhtama complex, along with the direct geological observations, suggest their spatial–temporal and genetic relationship. The data obtained on the age of magmatic rocks and ore mineralization are interpreted as indicating the formation of the Kultuma deposit that proceeded at the final stages of collision. Results of the investigation of the isotope composition of S in sulfide minerals point to their substantial enrichment with the heavy sulfur isotope (δ34S from 6.6 to 16‰). The only exclusion with anomalous low δ34S values (from 1.4 to 3.7‰) is pyrrhotite from retrograde skarns of the Ochunogda region. These differences are, first of all, due to the composition of the host rocks. Results of the studies of C and O isotope composition allow us to conclude that one of the main sources of carbon was the host rocks of the Bystrinskaya formation, while the changes in the isotope composition of oxygen are mainly connected with decarbonization processes and the interactions of magmatic fluids, host rocks and meteoric waters. The fluids that are responsible for the formation of the mineral associations of retrograde skarns and the zones of potassic alteration at the Kultuma deposit were reduced, moderately hot (~360–440 °С) and high-pressure (estimated pressure is up to 2.4 kbar). The distinguishing features of the fluids in the zones of potassic alteration at the Ochunogda region are a lower concentration and lower estimated pressure values (~1.7 kbar). The propylitic alteration took place with the participation of reduced lower-temperature (~280–320 °C) and lower-pressure (1–1.2 kbar) fluids saturated with carbon dioxide, which were later on diluted with meteoric waters to become more water-rich and low-temperature (~245–260 °C). The studies showed that the main factors that affected the distribution and specificity of mineralization are magmatic, lithological and structural–tectonic ones. Results of the studies allow us to classify the Kultuma deposit as a Au–Cu–Fe–skarn deposit related to reduced intrusion.


2021 ◽  
Vol 48 (3) ◽  
Author(s):  
Alexandria Littlejohn-Regular ◽  
John D. Greenough ◽  
Kyle Larson

Rocks in the Late Proterozoic Horsethief Creek Group at Quartz Creek in British Columbia display rare ‘pinolitic’ textures resembling those described in some sparry magnesite deposits elsewhere in the world. Elongated white magnesite crystals up to 30 cm long occur in a contrasting, dark, fine-grained matrix of dolomite, chlorite, organic material, clay minerals and pyrite. The rocks are aesthetically appealing for use in sculpture and as dimension stone. The term ‘pinolite’ is derived from the superficial similarities between these unusual textures and pinecones. Petrographic examination indicates that these textures formed when metasomatic fluids replaced primary sedimentary dolomite with magnesite. Fluids moved along fractures and bedding planes with repeated fracturing yielding magnesite crystals oriented in opposite directions on either side of annealed fractures, and broken magnesite crystals adjacent to later fractures. Magnesite contains dolomite microinclusions and has elevated Ca contents that are consistent with its formation by replacement of dolomite. Low concentrations of Cr, Ni, Co, Ti, Sr, and Ba in magnesite also imply formation in a metasomatic rather than a sedimentary environment. The rare earth element (REE) concentrations in the Quartz Creek magnesite are higher than those in most evaporitic magnesite and REE patterns lack the Ce and Eu anomalies that characterize carbonate rocks from sedimentary environments. Enrichment in light REE relative to heavy REE, and the similarities between dolomite, chlorite, and magnesite REE profiles, imply that metasomatic fluids modified the original sedimentary geochemical signature of the dolostones during formation of the pinolite rocks. A Late Ordovician to Early Silurian U–Pb age (433 ± 12 Ma), for titanite in the black matrix surrounding the sparry magnesite is younger than the local host rocks, and also younger than the Mesoproterozoic to Middle Cambrian stratigraphic ages of the host rocks for nearby magnesite deposits. The ca. 433 Ma titanite overlaps the ages for numerous fault-associated diatremes and volcaniclastic deposits in the area. Possibly the igneous activity furnished heat for, and/or was the source for, metasomatic fluids that produced the pinolite deposits.


Author(s):  
Laura Gonzalez-Blanco ◽  
Enrique Romero ◽  
Paul Marschall ◽  
Séverine Levasseur

AbstractDuring recent decades, argillaceous sedimentary formations have been studied as potential host formations for the geological disposal of long-living and heat-emitting radioactive waste—Boom Clay in Belgium and Opalinus Clay and Brown Dogger in Switzerland. A significant issue in the long-term performance of these potential host rocks concerns the generation and transport of gases. The pressure resulting from the generation of gas in an almost impermeable geological medium in the near field of a repository will increase. Under high gas pressures, the mechanical and hydraulic properties of the host rock are expected to change significantly. Preferential gas pathways may develop which exploit material heterogeneity, anisotropy (bedding planes), rock discontinuities, or interfaces between the different components of the repository, and may eventually lead to the release of the produced gases. Gas flow through these clayey rocks is investigated on the basis of laboratory work. Priority has been given to studying the volume change response of these initially water-saturated materials through relatively fast and controlled volume-rate gas injections. The effect of the gas injection rate, the confining pressure and the bedding orientation on the gas transport properties have been studied with particular attention paid to the coupling with strain behaviour. The results have shown features common to the three formations concerning the gas transfer process through preferential pathways, despite their initially differential properties.


2021 ◽  
Vol 82 (3) ◽  
pp. 61-63
Author(s):  
Lyubomirka Macheva ◽  
Philip Machev ◽  
Rossitsa Vassilevа ◽  
Yulia Plotkina

North-northeast of the village of Ilinden (Southern Pirin Mnt.) three eclogite boudins were separated on the geological map in scale 1:50 000 (Sarov, 2010). The rocks belong to the Slasten lithotectonic unit. The mineral assemblage and mineral chemistry do not allow these rocks to be classified as eclogites. They can be considered as eclogite-like ones, formed by postmagmatic-metasomatic alteration of the host rocks. Based on LA-ICP-MS sphene U-Pb dating, eclogite-like rocks yield a Late Jurassic age (160±19 Ma).


2021 ◽  
Vol 50 (3) ◽  
pp. 65-74
Author(s):  
Nikolay Piperov ◽  
Sylvina Georgieva

The epithermal high-sulphidation Cu-Au Chelopech deposit is characterized by a well-developed and well-traceable hydrothermal footprint manifested in the volcanic host rocks. The economic ore mineralization is embedded in the strong silicification, included among the advanced argillic zone of alteration, smoothly transitioning to quartz-sericite alteration that evolves into widespread propylitics. The quartz-sericite alteration zone is accessible for exploration only in underground mining galleries and exploration drillings. The main mineral assemblage in this zone is quartz, sericite, pyrite, minor rutile/anatase and relics of apatite and feldspar. According to XRD data from the studied samples, sericite was defined as illite and muscovite/sericite 2M1 polytype. The abundance of heavy stable isotopes (D, 18O) in the structural water of two sericite samples is the object of this study. A special attention was paid to the separation of extraneous waters from the structural one by thermal fractionation. The extracted structural water was converted to hydrogen and carbon dioxide before the isotopic measurements. The obtained results, put into a δD vs. δ18O plot, indicate that sericite structural water is “heavier” than meteoric water, within uncertainty limits.


2021 ◽  
Vol 82 (3) ◽  
pp. 70-72
Author(s):  
Rossitsa D. Vassileva ◽  
Georgi Milenkov ◽  
Sylvina Georgieva ◽  
Elitsa Stefanova

Chlorites are common constituent of the secondary mineral assemblage formed as alteration products after aluminosilicate host rocks in the Pb-Zn deposits in Madan district. In concordant pegmatite body from the Petrovitsa deposit, they are formed after mica flakes. Such transformation often results in abundant rutile grains. The dominant chlorite compositions fall in the clinochlore-chamosite series. Minor and trace elements incorporation of Li, B, V, Co, Ni, Zn, Ga, Rb, Sr, Cs, and Ba is detected. Calculated To of formation ranges within 298–306 °C.


2021 ◽  
Vol 937 (4) ◽  
pp. 042084
Author(s):  
A Tangirov ◽  
T Ishboboev ◽  
B Urunov

Abstract The leading role in the placement of gold mineralization in the Bukantau mountains belongs to structural and lithological factors. For gold-ore and gold-silver occurrences, sandy-shale strata of the flyschoid and olistostrome formations are favorable, then, rocks of the volcanogenic-dolomite-siliceous formation and then the carbonate formation (Okzhetpes type). The leading types of near-ore hydrothermal alteration of the host rocks in the studied deposits are silicification and, to a lesser extent, carbonatization and sericitization. They are accompanied by chloritization, biotitization, argillization, etc. Gold ore deposits and ore occurrences of sulfide-disseminated ores are confined mainly to the deposits of the Karashakh suite of the Middle Carboniferous (C2b + m1 kr). Moreover, gold-sulfide mineralization in the rocks of the Karashakh Formation is unevenly distributed.


Sign in / Sign up

Export Citation Format

Share Document