hot dry rock
Recently Published Documents


TOTAL DOCUMENTS

416
(FIVE YEARS 63)

H-INDEX

29
(FIVE YEARS 5)

2021 ◽  
Vol 95 (6) ◽  
pp. 1835-1843
Author(s):  
Zubin CHEN ◽  
Fa ZHAO ◽  
Feng SUN ◽  
Hao LÜ ◽  
Chunlu WANG ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1105
Author(s):  
Hui Tan ◽  
Fan Ling ◽  
Zhenwei Guo ◽  
Jie Li ◽  
Jiawei Liu

Hot dry rock (HDR) is a geothermal resource with a high temperature that is widely distributed and has good potential as a clean and renewable energy source. To determine underground electrical structures and to predict granite reservoir distributions, the wide-field electromagnetic (WFEM) method has been applied to explore deep mineral resources and has advantages such as explorations at greater depths and at high resolutions. In this study, a WFEM investigation was carried out for HDR exploration in Gonghe Basin within Qinghai Province. Six parallel survey lines, each spaced apart by 1 km, were designed for WFEM data acquisition. After data processing and inversion, we mapped the subsurface resistivity distribution and divided the inversion resistivity of HDR in the Qiabuqia area into four layers. From the WFEM results, we inferred the location of HDRs, which was verified using drilling wells. HDRs were found at a depth between 3200 m and 3705 m in the well. Furthermore, with the calibration of drilling well GR1, we provided the relationship between temperature and inversion resistivity. From this relationship, the exploration areas with mining potential can be determined.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xu Dong ◽  
Haozhe Geng ◽  
Guan Hao ◽  
Pan Li ◽  
Yi Teng ◽  
...  

It is of great significance for the sustainable development of global energy to develop hot dry rock (HDR) geothermal resources by using enhanced geothermal system (EGS) technology. Different working fluids in EGS have different heat recovery efficiencies. Therefore, this paper takes water and CO2 as the heat-carrying media and establishes a thermal hydraulic mechanical coupling model to simulate the heat recovery process in high-temperature rock mass. By considering the different confining pressures, rock temperature, and injection pressure, the advantages of H2O-EGS and CO2-EGS are obtained. The results show that with the increase of confining pressure, the heat recovery efficiency of water is significantly higher than that of CO2, but at higher reservoir temperature, CO2 has more advantages as a heat-carrying medium. The net heat extraction rate will increase with the increase of injection pressure, which indicates that the mass flow rate plays a leading role in the heat recovery process and increases the injection pressure of fluid which is more conducive to the thermal recovery of EGS. This study will provide a technical guidance for thermal energy exploitation of hot dry rock under different geological conditions.


Sign in / Sign up

Export Citation Format

Share Document