shear span
Recently Published Documents


TOTAL DOCUMENTS

216
(FIVE YEARS 84)

H-INDEX

16
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Linyun Zhou ◽  
Shui Wan

Abstract Ultra-high performance concrete (UHPC) has been gradually used in structure engineering due to its excellent mechanical performance, however, predicting the shear capacity of the UHPC beams is still a challenge, especially for the beams with small shear span to depth ratios. To address this issue, this paper devotes to developing a rational model to predict the shear capacity of the UHPC beams with stirrups based on the modified compression field theory (MCFT) and plastic theory. The shear force will be balanced by the stirrups, matrix, fibers and shear compression zone. The contribution of stirrups, matrix and fibers on shear capacity can be predicted by MCFT, and the contribution of compression zone is determined based on plastic theory. 12 UHPC beams was designed and tested to validate the proposed model. It can be found that the predictions agree well with test results, while the current design codes, including SETRA-AFGC and SIA, give overly conservative values for UHPC beams when the shear to span is less than 2.5.


2022 ◽  
Vol 2148 (1) ◽  
pp. 012032
Author(s):  
Yuexia Li ◽  
Huijun Yang ◽  
Chao Liu

Abstract In order to study the shear behavior of high-strength reinforced Reactive Powder Concrete (RPC) beams, eight test beams were designed and fabricated for the shear test under symmetrical concentrated load. By observing the development and failure mode of diagonal cracks, the influence of shear span ratio, stirrup ratio, and longitudinal reinforcement ratio on the cracking load, shear capacity, and deflection of the test beam is analyzed. The results show that: in a specific range, the shear capacity increases with the increase of stirrup ratio and longitudinal reinforcement ratio and decreases with the increase of shear span ratio. The shear span ratio has the most significant influence on the component’s failure mode and deformation capacity. The increase of the stirrup ratio can improve the deformation capacity of the component in a specific range. It is conservative to use the code to design concrete structures to calculate the shear capacity of high-strength reinforced reactive powder concrete beams. It is suggested that the shear calculation formula suitable for high-strength reinforced reactive powder concrete should be adopted to make the theoretical calculation results closer to the measured values.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 17
Author(s):  
Hyun-Do Yun ◽  
Gwon-Young Jeong ◽  
Won-Chang Choi

Steel fiber has been used successfully in concrete mixtures to control volumetric changes, including shrinkage. However, the feasibility of the use of steel fiber has been restricted to nonstructural construction, such as ‘slab on ground’. Recently, researchers have attempted to expand the applications of steel fiber to replace structural reinforcement (rebar) and have shown promising results in its substitution for shear reinforcement. Few studies have been conducted to ensure the feasibility of using steel fiber in structural components, however. This experimental study was designed to investigate the shear performance of steel fiber-reinforced concrete beams using the tensile strength of steel fiber and the shear span-to-depth ratio as variables. The experimental results indicate that the tensile strength of steel fiber significantly affects the shear strength of steel fiber-reinforced concrete beams, regardless of the shear span-to-depth ratio, and that steel fiber can play a role in shear reinforcement of concrete beams.


2021 ◽  
pp. 136943322110606
Author(s):  
Zhou Junlong ◽  
Li Dongsheng

This paper presents a semi-theoretical empirical formula to predict the shear-flexural cracking strength of an RC beam enhanced with the external vertical prestressing rebar (EVPR) technique. Besides, nonlinear finite element models (FEM) created by software ABAQUS were used to analyze the effect of crucial parameters on the shear-flexural cracking strength. The parameters involve shear span-to-depth ratio, concrete strength, longitudinal tension reinforcement ratio, initial pulling force and spacing of EVPRs, and the vertical stiffness of the EVPR supports. Results show that the cracking strength increased linearly with the tensile strength of the concrete and the initial pulling force. The small shear span-to-depth ratio was predominantly conducive to the cracking strength. Adequate longitudinal tension rebars contributed to the cracking strength improvement. A reasonable EVPR spacing was recommended to ensure the cracking strength. Greater vertical stiffness of the EVPR supports can ensure higher compressive stress for the RC beam to improve the cracking strength.


Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 624
Author(s):  
Sayan Sirimontree ◽  
Chanachai Thongchom ◽  
Suraparb Keawsawasvong ◽  
Peem Nuaklong ◽  
Pitcha Jongvivatsakul ◽  
...  

This paper presents the results of an experimental study on the mechanical behaviors of steel‒concrete composite decks with different shear span-to-depth ratios. Herein, four composite decks categorized into two types with shear span-to-depth ratios of 2.5 and 4.6 are designed for an experimental program. The decks then undergo the four-point bending tests until failure to investigate the structural responses, such as the load, displacement, crack mechanism, and failure mode. Conventional section analysis is used to derive the flexural strength of composite decks in comparison with the test results. Additionally, the ductility of the composite decks is assessed based on the displacement indices. The analysis results demonstrate that the stiffness and capacity of the composite deck increase with the decrease in the shear span length. However, the ductility of the composite slabs increases with the shear span length. The flexural strengths predicted by section analysis overestimate the actual test results. The shear span-to-depth ratio affects the crack mechanism of the composite decks.


Author(s):  
Hussam A Goaiz ◽  
Thaar S. Al-Gasham ◽  
Jasim M. Mhalhala ◽  
Sallal R. Abid
Keyword(s):  

Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 576
Author(s):  
Jinqing Jia ◽  
Qi Cao ◽  
Lihua Zhang ◽  
Yulong Hu ◽  
Zihan Meng

Different from the traditional concrete mixing procedure, the innovative post-filling coarse aggregate concrete (PFCC) reduces the cost of pumping concrete by increasing the coarse aggregate content and reducing the usage of cement. Previous studies have shown that PFCC enhances the compressive strength, elastic modulus, and flexural strength of concrete. In this paper, the shear behavior of 13 post-filling coarse aggregate concrete beams and 3 control beams was tested to determine the relationships between the shear performance of the beam and the post-filling coarse aggregate ratio, concrete strength grade, shear span ratio and stirrup reinforcement ratio. The results showed that the ultimate shear capacity of beam specimen increases first and then decreases with the increase in post-filling coarse aggregate ratio, reaching the maximum at 15% post-filling ratio. The results also indicated that the ultimate shear capacity of the beam increases with the increase in concrete strength grade and stirrup ratio. However, experimental results exhibited that the ultimate shear capacity decreases as the shear span ratio increases. This study provides a reference for the application of post-filling coarse aggregate concrete in engineering practice.


2021 ◽  
Author(s):  
Syed Humayun Basha ◽  
Xiaoqin Lian ◽  
Wei Hou ◽  
Pandeng Zheng ◽  
Zi-Xiong Guo

Abstract The present research reports the application of engineered cementitious composites (ECC) as an alternative to conventional concrete to improve the brittle shear behavior of short columns. Experimental and finite element investigation was conducted by testing five reinforced engineered cementitious composite (RECC) concrete columns (half-scale specimens) and one control reinforced concrete (RC) specimen for different shear-span and transverse reinforcement ratios under cyclic lateral loads. RECC specimens with higher shear-span and transverse reinforcement ratios demonstrated a significant effect on the column shear behavior by improving ductility (>5), energy dissipation capacity (1.2 to 4.1 times RC specimen), gradual strength degradation (ultimate drift >3.4%), and altering the failure mode. The self-confinement effect of ECC fibers maintained the integrity in the post-peak region and reserved the transmission of stress through fibers without noticeable degradation in strength. Finite element modelling of RECC specimens was carried out by adopting simplified constitutive material models. It was apprehended that the model simulated the global response (strength and stiffness) with an accuracy of about 95%, and captured the shear and flexure crack patterns reasonably well.


Sign in / Sign up

Export Citation Format

Share Document