reference node
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 14)

H-INDEX

6
(FIVE YEARS 1)

2022 ◽  
Vol 2022 ◽  
pp. 1-22
Author(s):  
Xiaoyan Gu ◽  
Feng He ◽  
Rongwei Wang ◽  
Liang Chen

In the unmanned aerial vehicle (UAV) swarm combat system, multiple UAVs’ collaborative operations can solve the bottleneck of the limited capability of a single UAV when they carry out complicated missions in complex combat scenarios. As one of the critical technologies of UAV collaborative operation, the mobility model is the basic infrastructure that plays an important role for UAV networking, routing, and task scheduling, especially in high dynamic and real-time scenarios. Focused on real-time guarantee and complex mission cooperative execution, a multilevel reference node mobility model based on the reference node strategy, namely, the ML-RNGM model, is proposed. In this model, the task decomposition and task correlation of UAV cluster execution are realized by using the multilayer task scheduling model. Based on the gravity model of spatial interaction and the correlation between tasks, the reference node selection algorithm is proposed to select the appropriate reference node in the process of node movement. This model can improve the real-time performance of individual tasks and the overall mission group carried out by UAVs. Meanwhile, this model can enhance the connectivity between UAVs when they are performing the same mission group. Finally, OMNeT++ is used to simulate the ML-RNGM model with three experiments, including the different number of nodes and clusters. Within the three experiments, the ML-RNGM model is compared with the random class mobility model, the reference class mobility model, and the associated class mobility model for the network connectivity rate, the average end-to-end delay, and the overhead caused by algorithms. The experimental results show that the ML-RNGM model achieves an obvious improvement in network connectivity and real-time performance for missions and tasks.


Author(s):  
Soumya J. Bhat ◽  
K. V. Santhosh

AbstractInternet of Things (IoT) has changed the way people live by transforming everything into smart systems. Wireless Sensor Network (WSN) forms an important part of IoT. This is a network of sensor nodes that is used in a vast range of applications. WSN is formed by the random deployment of sensor nodes in various fields of interest. The practical fields of deployment can be 2D or 3D, isotropic or anisotropic depending on the application. The localization algorithms must provide accurate localization irrespective of the type of field. In this paper, we have reported a localization algorithm called Range Reduction Based Localization (RRBL). This algorithm utilizes the properties of hop-based and centroid methods to improve the localization accuracy in various types of fields. In this algorithm, the location unknown nodes identify the close-by neighboring nodes within a predefined threshold and localize themselves by identifying and reducing the probable range of existence from these neighboring nodes. The nodes which do not have enough neighbors are localized using the least squares method. The algorithm is tested in various irregular and heterogeneous conditions. The results are compared with a few state-of-the-art hop-based and centroid-based localization techniques. RRBL has shown an improvement in localization accuracy of 28% at 10% reference node ratio and 26% at 20% reference node ratio when compared with other localization algorithms.


Author(s):  
Yan Ruan ◽  
Xuliang Zhang ◽  
Jiaona Chen

As intelligence technology develops, there is a higher requirement for computing speed and accuracy of water injection system simulation. In this paper, aiming at the tree-shaped water injection pipe network system of large-scale oilfields, based on the energy equation for calculating the pressure drop [Formula: see text] of pipe section, a mathematical model of the pipeline unit and the node unit is established, and finally, a mathematical model of pipe network for the entire water injection system is established; then, the improved iterative algorithm is used to solve the simulation model of water injection system. In this way, we determine the boundary calculation conditions, take the water injection station as reference node, and use the maximum pressure of water injection well as the initial value of the reference node for calculation, which reduces the number of iterations in model calculation; by comparing the simulation results of different iteration steps, 0.01 is selected as the iteration step size due to its higher calculation accuracy; and the calculation process has also been optimized. The process of solving the characteristic matrix [Formula: see text] is combined with the process of calculating the pressure drop [Formula: see text] of pipe section, and placed outside the algorithm loop, thereby shortening the calculation time of a single cycle and reducing the calculation amount of the algorithm. The application cases show that the proposed optimization algorithm for water injection system pipe network simulation can be used as an effective method to improve the solution speed and calculation accuracy of the simulation algorithm of tree-shaped water injection system in large-scale oilfields.


2020 ◽  
Vol 20 (18) ◽  
pp. 10913-10923
Author(s):  
Yanshun Zhang ◽  
Nan Wang ◽  
Shudi Weng ◽  
Ming Li ◽  
Dong Mou ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5061
Author(s):  
Dejing Zhang ◽  
Yuan Yuan ◽  
Yanqing Bi

Time synchronization is a key technique in large-scale wireless sensor network applications. In order to tackle the problems of multi-hop synchronization error accumulation, clock frequency skew swinging, and network topology changes, a time synchronization protocol based on dynamic routing and forwarding certification (DRFC-TSP) is proposed in this paper. During the time synchronization process, a reference node with fewer synchronization hops and a more stable clock frequency is selected for every single hop, in order to obtain the best synchronization route. In this way, synchronization error accumulation can be restrained and the impact of clock frequency skew swinging on the time synchronization precision can be reduced. Furthermore, changes of the network topology can be well adapted by dynamic routing, in which the reference node is updated in every synchronization round. In the forwarding certification process, the status of nodes forwarding synchronous information outwards is authored by information exchange between neighboring nodes. Only synchronous information of the certificated nodes with a better performance can be forwarded. The network traffic can be decreased and the time synchronization precision can also be ensured, even with less energy consumption. Feasibility testing in large-scale wireless sensor networks is verified on NS2 simulation and more performances are evaluated on an embedded Linux platform.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4095
Author(s):  
Mahmoud Elsharief ◽  
Mohamed A. Abd El-Gawad ◽  
Haneul Ko ◽  
Sangheon Pack

Time synchronization is an essential issue in industrial wireless sensor networks (IWSNs). It assists perfect coordinated communications among the sensor nodes to preserve battery power. Generally, time synchronization in IWSNs has two major aspects of energy consumption and accuracy. In the literature, the energy consumption has not received much attention in contrast to the accuracy. In this paper, focusing on the energy consumption aspect, we introduce an energy-efficient reference node selection (EERS) algorithm for time synchronization in IWSNs. It selects and schedules a minimal sequence of connected reference nodes that are responsible for spreading timing messages. EERS achieves energy consumption synchronization by reducing the number of transmitted messages among the sensor nodes. To evaluate the performance of EERS, we conducted extensive experiments with Arduino Nano RF sensors and revealed that EERS achieves considerably fewer messages than previous techniques, robust time synchronization (R-Sync), fast scheduling and accurate drift compensation for time synchronization (FADS), and low power scheduling for time synchronization protocols (LPSS). In addition, simulation results for a large sensor network of 450 nodes demonstrate that EERS reduces the whole number of transmitted messages by 52%, 30%, and 13% compared to R-Sync, FADS, and LPSS, respectively.


2020 ◽  
Vol 15 (4) ◽  
pp. 1879-1897
Author(s):  
Apidet Booranawong ◽  
Kiattisak Sengchuai ◽  
Nattha Jindapetch ◽  
Hiroshi Saito

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 79287-79298
Author(s):  
Jacek Stefanski ◽  
Jaroslaw Sadowski

Sign in / Sign up

Export Citation Format

Share Document