breast cancer cell migration
Recently Published Documents


TOTAL DOCUMENTS

280
(FIVE YEARS 50)

H-INDEX

38
(FIVE YEARS 8)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Yongsheng Huang ◽  
Sijia Liu ◽  
Mengjie Shan ◽  
Sophie C. Hagenaars ◽  
Wilma E. Mesker ◽  
...  

AbstractTransforming growth factor-β (TGF-β) acts as a pro-metastatic factor in advanced breast cancer. RNF12, an E3 ubiquitin ligase, stimulates TGF-β signaling by binding to the inhibitory SMAD7 and inducing its proteasomal degradation. How RNF12 activity is regulated and its exact role in cancer is incompletely understood. Here we report that RNF12 was overexpressed in invasive breast cancers and its high expression correlated with poor prognosis. RNF12 promoted breast cancer cell migration, invasion, and experimental metastasis in zebrafish and murine xenograft models. RNF12 levels were positively associated with the phosphorylated AKT/protein kinase B (PKB) levels, and both displayed significant higher levels in the basal-like subtype compared with the levels in luminal-like subtype of breast cancer cells. Mechanistically, AKT-mediated phosphorylation induced the nuclear localization of RNF12, maintained its stability, and accelerated the degradation of SMAD7 mediated by RNF12. Furthermore, we demonstrated that RNF12 and AKT cooperated functionally in breast cancer cell migration. Notably, RNF12 expression strongly correlated with both phosphorylated AKT and phosphorylated SMAD2 levels in breast cancer tissues. Thus, our results uncovered RNF12 as an important determinant in the crosstalk between the TGF-β and AKT signaling pathways during breast cancer progression.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3487
Author(s):  
Mohamed Chamlali ◽  
Sana Kouba ◽  
Lise Rodat-Despoix ◽  
Luca Matteo Todesca ◽  
Zoltán Pethö ◽  
...  

Orai3 calcium (Ca2+) channels are implicated in multiple breast cancer processes, such as proliferation and survival as well as resistance to chemotherapy. However, their involvement in the breast cancer cell migration processes remains vague. In the present study, we exploited MDA-MB-231 and MDA-MB-231 BrM2 basal-like estrogen receptor-negative (ER−) cell lines to assess the direct role of Orai3 in cell migration. We showed that Orai3 regulates MDA-MB-231 and MDA-MB-231 BrM2 cell migration in two distinct ways. First, we showed that Orai3 remodels cell adhesive capacities by modulating the intracellular Ca2+ concentration. Orai3 silencing (siOrai3) decreased calpain activity, cell adhesion and migration in a Ca2+-dependent manner. In addition, Orai3 interacts with focal adhesion kinase (FAK) and regulates the actin cytoskeleton, in a Ca2+-independent way. Thus, siOrai3 modulates cell morphology by altering F-actin polymerization via a loss of interaction between Orai3 and FAK. To summarize, we demonstrated that Orai3 regulates cell migration through a Ca2+-dependent modulation of calpain activity and, in a Ca2+-independent manner, the actin cytoskeleton architecture via FAK.


Author(s):  
Emily D. Duncan ◽  
Ke-Jun Han ◽  
Margaret A. Trout ◽  
Rytis Prekeris

ABSTRACTCell migration is a complex process that involves coordinated changes in membrane transport, actin cytoskeleton dynamics, and extracellular matrix remodeling. Ras-like small monomeric GTPases, such as Rap2, play a key role in regulating actin cytoskeleton dynamics and cell adhesions. However, how Rap2 function, localization, and activation are regulated during cell migration is not fully understood. We previously identified the small GTPase Rab40b as a regulator of breast cancer cell migration. Rab40b contains a Suppressor of Cytokine Signaling (SOCS) box, which facilitates binding to Cullin5, a known E3 Ubiquitin Ligase component responsible for protein ubiquitylation. In this study, we show that the Rab40b/Cullin5 complex ubiquitylates Rap2. Importantly, we demonstrate that ubiquitylation regulates Rap2 activation, as well as recycling of Rap2 from the endolysosomal compartment to the lamellipodia of migrating breast cancer cells. Based on these data, we propose that Rab40b/Cullin5 ubiquitylates and regulates Rap2-dependent actin dynamics at the leading-edge, a process that is required for breast cancer cell migration and invasion.SUMMARYThe Rab40b/Cul5 complex is an emerging pro-migratory molecular machine. Duncan et al. identify the small GTPase Rap2 as a substrate of the Rab40b/Cul5 complex. They provide evidence that Rab40b/Cul5 ubiquitylates Rap2 to regulate its localization and activity during breast cancer cell migration, ultimately proposing a model by which Rap2 is targeted to the leading-edge plasma membrane to regulate actin dynamics during cell migration.


Author(s):  
Lennis Beatriz Orduña-Castillo ◽  
Jorge Eduardo del-Río-Robles ◽  
Irving García-Jiménez ◽  
César Zavala-Barrera ◽  
Yarely Mabell Beltrán-Navarro ◽  
...  

2021 ◽  
Author(s):  
Ritsuko Nakamura ◽  
Takeru Oyama ◽  
Masafumi Inokuchi ◽  
Satoko Ishikawa ◽  
Miki Hirata ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document