catalase gene
Recently Published Documents


TOTAL DOCUMENTS

248
(FIVE YEARS 14)

H-INDEX

34
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Hanieh Mohajjel Shoja ◽  
Taha Khezriani ◽  
Maryam Kolahi ◽  
Elham Elham Mohajel Kazemi ◽  
Milad Yazdi

Abstract Crops in arid and semi-arid regions are exposed to adverse environmental factors such as drought. Experiments were conducted to determine the morphologic and anatomic response of drought-susceptible and tolerant varieties of tomato (Solanum lycopersicum L.) under drought conditions (100%, 75%, 50%, 25% of field capacity). To investigate the role of antioxidant enzyme, catalase gene expression was examined by real-time RT-qPCR and microarray studies of the catalase gene in tomatoes under stress examined utilizing bioinformatics. The results showed significant morphological changes under drought conditions. Anatomical studies revealed that CaljN3 is more resistant than SuperstrainB varieties under drought stress. Relative expression of the CAT1 gene did not show any significant difference in both Caljn3 and SuperstrainB varieties based on quantitative Real-Time PCR, under drought stress. The bioinformatics results from microarray analysis revealed that this gene did not show a significant difference in expression in any of the cultivars and under any of the stresses. This gene is in the conserve cluster, a cluster with 118 members and a z score of 14.26148. This showed that this cluster is fully protected between two susceptible and tolerant varieties. The enrichment gene of this cluster did not show any significant intracellular pathways. It appears that in response to stress, an activating mechanism other than catalase is necessary. The fight against oxidative stress may begin one step before that of the enzymes and seeks to combat the stressor by activating proteins, especially channels, pumps and some cellular messengers.


Author(s):  
Mao‐Ye Li ◽  
Yun Wang ◽  
Xiao Lei ◽  
Chuan‐Tao Xu ◽  
Dong‐Dong Wang ◽  
...  

Author(s):  
Saeid Abu-Romman ◽  
Tarek G. Ammari

Background: In plants, wounding can result from mechanical injuries or from biotic factors induced by herbivores infestation and pathogen infection. Wounding enhances the production of reactive oxygen species (ROS). Enzymatic and nonenzymatic defense systems have been reported in plants to immediately combat increased levels of ROS. Plant catalases are encoded by a multigene family and are the major scavenging enzymes catalyzing the dismutation of toxic hydrogen peroxide to water and dioxygen. Methods: In the preasent work, a quantitative real-time PCR was used to quantify the expression level of a catalase gene from common vetch (Vicia sativa; VsCat) in response to mechanical wounding. Result: The results of the time course study showed that the transcript levels of VsCat were significantly increased in wounded leaves at all-time points examined with a peak expression of 7.6 folds at 2 h post wounding. The increased expression of VsCat might represent a direct defense against elevated H2O2 generated during wounding.


2021 ◽  
Vol 28 (1) ◽  
pp. 53-56
Author(s):  
Ahmad Zulfan ◽  
Nickanor K. R Wonatorey

Objective: This study aims to analyze the effects of hyperglycemia status on the function of testicular spermatology, especially CAT-1. Material & Methods: This study was an experimental pre-clinical study. Twenty-seven rats were divided into 3 groups: normal, 2 weeks, and 4 weeks hyperglycemia. The hyperglycemic state in the Wistar rats was induced by Streptozotocin (STZ). All data were collected and analyzed with SPSS 20.0. At two and four weeks, testicular tissue was extracted and it will be processed using the Total RNA Mini Kit FavorPrepTM then quantitative PCR was performed using the SYBR® Fast qPCR Kit. Results: CAT-1 gene expression in the hyperglycemia induction group increased when induced for 2 weeks and again after 4 weeks compared to controls (18.88 ± 4.7 and 21.45 ± 5.52 vs 10.83 ± 3.4). However only induction after 2 weeks was statistically significant (p= 0.021). Conclusion: CAT-1 (Catalase) gene expression has increased in testicular tissue under conditions of hyperglycemia.


Author(s):  
Shengnan Ge ◽  
Yulei Wei ◽  
Jinjie Zhang ◽  
Wenjing Shao ◽  
Jiaxin Li ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Nasra Ayuob ◽  
Maha Jameal Balgoon ◽  
Ahmed A. El-Mansy ◽  
Wafaa A. Mubarak ◽  
Alaa El-Din L. Firgany

Background. The association between hypothyroidism and renal diseases has been described in many studies. Nigella Sativa was among the recently reported natural product that has the potential to prevent renal tissue damage and fibrosis. The aim of this study was to evaluate the possible protective effect of thymoquinone on the structure of the renal cortex of hypothyroid rats and explore the mechanism behind it. Methods. An experimental model of hypothyroidism was induced in adult male Wistar rats by administration of propylthiouracil (6 mg/kg/body weight). One hypothyroid group was treated with thymoquinone at the dose of 50 mg/kg/body weight and compared to the untreated group. Thyroid function and oxidant/antioxidant status were assessed in the serum. Catalase gene expression was assessed using the real-time polymerase chain reaction. The kidney was assessed both histologically and immunohistochemically. Results. Administration of propylthiouracil resulted in a significant decrease in the serum levels of nitric oxide, reduced glutathione, and superoxide dismutase activity while the level of malondialdehyde significantly (p<0.001) increased. Administration of thymoquinone alleviated this effect on the thyroid hormones and significantly increased the serum levels of antioxidants. Thymoquinone significantly (p<0.001) upregulated catalase transcription by about 24-fold and could block the hypothyroidism-induced glomerular and tubular injury. Conclusion. Thymoquinone may have a potential protective effect against hypothyroidism-induced renal injury acting through the attenuation of the oxidative stress and upregulation of renal catalase gene expression.


Animals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1060
Author(s):  
Adnan Khan ◽  
Muhammad Zahoor Khan ◽  
Jinhuan Dou ◽  
Saqib Umer ◽  
Huitao Xu ◽  
...  

Heat stress in dairy cattle is recognized to compromise fertility by altering the functions of ovarian follicle-enclosed cells, e.g., oocyte and granulosa cells (GCs). Catalase is an antioxidant enzyme that plays a significant role in cellular protection against oxidative damage by the degradation of hydrogen peroxide to oxygen and water. In this study, the role and mechanism of CAT on the heat stress (HS)-induced apoptosis and altered proliferation of bovine GCs were studied. The catalase gene was knocked-down successfully in bovine GCs at both the transcriptional and translational levels. After a successful knockdown using siRNA, GCs were divided into HS (40 °C + NC and 40 °C + CAT siRNA) and 38 °C + NC (NC) groups. The GCs were then examined for ROS, viability, mitochondrial membrane potential (MMP), cell cycle, and biosynthesis of progesterone (P4) and estrogen (E2) hormones. The results indicated that CAT silencing promoted ROS production and apoptosis by up-regulating the Bcl-2-associated X protein (BAX) and Caspase-3 genes both at the transcriptional and translational levels. Furthermore, the knockdown of CAT markedly disrupted the MMP, impaired the production of P4 and E2, altered the progression of the G1 phase of the cell cycle, and decreased the number of cells in the S phase. This was further verified by the down-regulation of proliferating cell nuclear antigen (PCNA), CyclinB1, steroidogenic acute regulatory protein (STAR), and cytochrome P450 family 11 subfamily A member 1 (Cyp11A1) genes. Our study presented a novel strategy to characterize how CAT can regulate cell proliferation and apoptosis in GCs under HS. We concluded that CAT is a broad regulatory marker in GCs by regulating apoptosis, cellular progression, and simultaneously by vital fluctuations in hormonal signaling. Our findings infer a crucial evidence of how to boost the fertility of heat-stressed cows.


2020 ◽  
Vol 28 (2) ◽  
pp. 11-20
Author(s):  
Marzieh Alipour ◽  
Sirous Naeimi ◽  
Mohammad Mahdi Moghanibashi ◽  
khalil Khasheivarnamkhasti ◽  
Zeynab Mahmmodian ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document