runoff hydrographs
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 11)

H-INDEX

11
(FIVE YEARS 2)

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3433
Author(s):  
Marcos Sanz-Ramos ◽  
Ernest Bladé ◽  
Fabián González-Escalona ◽  
Gonzalo Olivares ◽  
José Luis Aragón-Hernández

There is still little experience on the effect of the Manning roughness coefficient in coupled hydrological-hydraulic distributed models based on the solution of the Shallow Water Equations (SWE), where the Manning coefficient affects not only channel flow on the basin hydrographic network but also rainfall-runoff processes on the hillslopes. In this kind of model, roughness takes the role of the concentration time in classic conceptual or aggregated modelling methods, as is the case of the unit hydrograph method. Three different approaches were used to adjust the Manning roughness coefficient in order to fit the results with other methodologies or field observations—by comparing the resulting time of concentration with classic formulas, by comparing the runoff hydrographs obtained with aggregated models, and by comparing the runoff water volumes with observations. A wide dispersion of the roughness coefficients was observed to be generally much higher than the common values used in open channel flow hydraulics.


CATENA ◽  
2021 ◽  
Vol 207 ◽  
pp. 105693
Author(s):  
Rodrigo César Vasconcelos dos Santos ◽  
Marcelle Martins Vargas ◽  
Luís Carlos Timm ◽  
Samuel Beskow ◽  
Tirzah Moreira Siqueira ◽  
...  

2021 ◽  
Author(s):  
Marcus Beylich ◽  
Uwe Haberlandt ◽  
Frido Reinstorf

Abstract Daily hydrological models are commonly used to study changes in flood peaks due to climate change. Although they often lead to an underestimation of absolute floods, it is assumed that future flood peaks in smaller mesoscale catchments are less underestimated when examining the relative change signal of floods. In this study, the applicability of this hypothesis is investigated by comparing the results of a daily hydrological model set, calibrated on runoff hydrographs, with an hourly model set calibrated on flood peak distributions. For analysis, a daily RCP8.5 climate model ensemble is disaggregated to hourly values and the runoff is simulated on a daily and hourly basis for six mesoscale catchments in Central Germany. Absolute floods and relative flood changes are compared between both model sets. The results show significant differences between the absolute floods of both model sets, in most cases caused by underestimations due to the daily modeling process. In contrast, the differences between the two model sets are not significant for the relative change signal of the floods, especially for higher return periods. To improve results in climate studies with coarse modeling time step, the use of relative change signal of floods instead of absolute values is recommended.


La Granja ◽  
2020 ◽  
Vol 32 (2) ◽  
pp. 54-71
Author(s):  
Nelson Andrés López Machado ◽  
Christian Gonzalo Domínguez Gonzalez ◽  
Wilmer Barreto ◽  
Néstor Méndez ◽  
Leonardo José López Machado ◽  
...  

This article discusses the use of green roofs as rainfall water storage in its soil matrix. The methodology is analytical based on mathematical models, where runoff produced in an urban area is compared with current conditions of ordinary roofs with ceramic or bituminous materials as the original scenario, against another where green roofs are used. The study area is located in the Palavecino municipality of Lara state in Venezuela, in the flood zone of Quebrada Tabure. In this research, a quantitative comparison of the direct runoff hydrographs of the proposed scenarios was used, obtaining as a main result the reduction of runoff between 60% and 80% according to the period of return. An interesting point of this research was the incorporation of the routing of hydrographs on the roofs, reducing even more the peak flow over 90%, and delaying the peak time of the generated hydrographs between 10 and 12 minutes while the total duration of the hydrographs increase more than three times.


2020 ◽  
Vol 68 (2) ◽  
pp. 144-154
Author(s):  
Babar Mujtaba ◽  
Hana Hlaváčiková ◽  
Michal Danko ◽  
João L.M.P. de Lima ◽  
Ladislav Holko

AbstractThe role of stony soils in runoff response of mountain catchments is rarely studied. We have compared simulated response of stony soils with measured catchment runoff for events caused by rains of small and high intensities in the mountain catchment of the Jalovecký Creek, Slovakia. The soil water response was simulated for three sites with stoniness 10–65% using the Hydrus-2D single porosity model. Soil hydraulic parameters employed in the modelling, i. e. the saturated hydraulic conductivity and parameters of the soil water retention curves, were obtained by two approaches, namely by the Representative Elementary Volume approach (REVa) and by the inverse modelling with Hydrus-1D model (IMa). The soil water outflow hydrographs simulated by Hydrus-2D were compared to catchment runoff hydrographs by analysing their skewness and peak times. Measured catchment runoff hydrographs were similar to simulated soil water outflow hydrographs for about a half of rainfall events. Interestingly, most of them were caused by rainfalls with small intensity (below 2.5 mm/10 min). The REV approach to derive soil hydraulic parameters for soil water outflow modelling provided more realistic shapes of soil water outflow hydrographs and peak times than the IMa approach.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1450 ◽  
Author(s):  
Dariusz Młyński ◽  
Andrzej Wałęga ◽  
Leszek Książek ◽  
Jacek Florek ◽  
Andrea Petroselli

The aim of the study was to analyze the possibility of using selected rainfall-runoff models to determine the design hydrograph and the related peak flow in a mountainous catchment. The basis for the study was the observed series of hydrometeorological data for the Grajcarek catchment area (Poland) for the years 1981–2014. The analysis was carried out in the following stages: verification of hydrometeorological data; determination of the design rainfall; and determination of runoff hydrographs with the following rainfall-runoff models: Snyder, NRCS-UH, and EBA4SUB. The conducted research allowed the conclusion that the EBA4SUB model may be an alternative to other models in determining the design hydrograph in ungauged mountainous catchments. This is evidenced by the lower values of relative errors in the estimation of peak flows with an assumed frequency for the EBA4SUB model, as compared to Snyder and NRCS-UH.


2020 ◽  
Author(s):  
Minyeob Jeong ◽  
Jongho Kim ◽  
Dae-Hong Kim

<p>A method to predict runoff based on the instantaneous unit hydrograph and dynamic wave approximation is proposed. The method is capable of generating IUH of a watershed without the need of observed rainfall and runoff data, and only topography and surface roughness of a watershed are needed. IUHs were generated using a dynamic wave model and S-hydrograph method, and IUH generated was a function of both watershed and rainfall properties. The ordinate of IUH depends on the rainfall intensities, and the peak value of IUH was proportional to the rainfall intensity while the time to peak of the IUH was inversely proportional to the rainfall intensity.  Corresponding IUHs for different rainfall intensities were used to generate runoff hydrographs. Since the IUH is generated using a dynamic wave model, it can be a tool to physically simulate the rainfall-runoff processes. Also, nonlinear rainfall-runoff relationship can be taken into account by expressing IUH as a function of rainfall excess intensity. Several test results in ideal basins and in a real watershed show that the proposed method has a good capability in predicting runoff, while several limitations remain.</p><p>Keywords: rainfall-runoff, instantaneous unit hydrograph, dynamic wave model</p>


2020 ◽  
Author(s):  
Arturs Veinbergs ◽  
Ainis Lagzdins

<p>The threshold groundwater levels limiting the drainage depth and tile drain runoff as well as runoff recession and runoff partitioning are case-specific.  These are the characteristics that are usually necessary for setting up and calibration processes for such models as HYPE (Lindström et al. 2010) and SWAT (Neitsch et al. 2002).  </p><p>The objective of the present study is to identify the thresholds of groundwater levels and runoff rates that limit the formations of such runoff components as base flow and tile drain runoff. This study utilizes the data that represents the daily runoff measurements in open ditch with such characteristics as total length 2.4 km, basin area 368 ha, loamy soils, agricultural lands with subsurface drainage systems installed in 98% of the area, average tile depth 1.2m below ground surface.</p><p>The runoff components were partly separated from the daily runoff hydrographs through the analysis of storm runoff recession gradients (eq.1) and groundwater level fluctuations during the period from 2006. to 2015. Baseflow and tile drain runoff ware calculated as beeing linearly dependent on daily groundwater level fluctuations (eq.2).</p><p>  R<sub>ci</sub>=Q<sub>i+1</sub>/Q<sub>i</sub>,     (1)</p><p>Q<sub>x</sub>=f<sub>x</sub>(GWT)=a<sub>x</sub>*GWT+b<sub>x</sub> ,      (2)</p><p>Where: R<sub>ci</sub> – recession gradient; Q<sub>i </sub>and Q<sub>i+1</sub>– runoff of day i and i+1 respectively;  Q<sub>x</sub> – runoff component; GWT– groundwater level; a<sub>x </sub>and b<sub>x</sub>– slope and intercept of a linear function.</p><p>Nash-Sutcliffe efficiency (NSE) and percent bias (PBIAS) were used for comparison of calculated and separated runoff components.</p><p>The results indicate a decrease in drainage intensity and reduction in specific yield during the study period. The groundwater level of 1.18m below ground surface limit the existence of the tile drain runoff, that, furthermore,  is similar for rising and falling groundwater level. The results reveal that runoff could be contributed by 35%, 57% and 8% of baseflow, tile drain runoff and surface runoff respectively.</p>


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 611 ◽  
Author(s):  
Sharif Hossain ◽  
Guna Alankarage Hewa ◽  
Subhashini Wella-Hewage

This study investigates the comparative performance of event-based and continuous simulation modelling of a stormwater management model (EPA-SWMM) in calculating total runoff hydrographs and direct runoff hydrographs. Myponga upstream and Scott Creek catchments in South Australia were selected as the case study catchments and model performance was assessed using a total of 36 streamflow events from the period of 2001 to 2004. Goodness-of-fit of the EPA-SWMM models developed using automatic calibration were assessed using eight goodness-of-fit measures including Nash–Sutcliff efficiency (NSE), NSE of daily high flows (ANSE), Kling–Gupta efficiency (KGE), etc. The results of this study suggest that event-based modelling of EPA-SWMM outperforms the continuous simulation approach in producing both total runoff hydrograph (TRH) and direct runoff hydrograph (DRH).


Geosciences ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 77 ◽  
Author(s):  
Sayed Abedin ◽  
Haroon Stephen

This research aims to develop a framework using the Geographic Information System (GIS) to perform modeling and mapping of flood spatiotemporal variation in urban micro-watersheds. The GIS-framework includes a workflow of several methods and processes including delineation of urban watershed, generation of runoff hydrographs, and time series mapping of inundation depths and flood extent. This framework is tested in areas previously known to have experienced flooding at the University of Nevada, Las Vegas main campus, including Black Parking Lot (Blacklot) and East Mall. Calibration is performed by varying Digital Elevation Model (DEM) resolution, rainfall temporal resolution, and clogging factor whereas validation is performed using flood information from news reports and photographs. The testing at the Blacklot site resulted in calibration at 5 m DEM resolution and clogging factor of 0.83. The flood model resulted in an error of 24% between the estimated (26 inches/66 cm) and actual (34 inches/86.36 cm) flood depths. The estimated flood extents are consistent with the reported conditions and observed watermarks in the area. The flood beginning time estimated from the model is also consistent with the news reports. The testing at East Mall site also shows consistent results. The GIS framework provides spatiotemporal maps of flood inundation for visualization of flood dynamics. This research provides insight into flood modeling and mapping for a storm drain inlet-based watershed.


Sign in / Sign up

Export Citation Format

Share Document