gould belt
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 10)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Vol 922 (1) ◽  
pp. 87
Author(s):  
Ayushi Singh ◽  
Christopher D. Matzner ◽  
Rachel K. Friesen ◽  
Peter G. Martin ◽  
Jaime E. Pineda ◽  
...  

Abstract Dynamical studies of dense structures within molecular clouds often conclude that the most massive clumps contain too little kinetic energy for virial equilibrium, unless they are magnetized to an unexpected degree. This raises questions about how such a state might arise, and how it might persist long enough to represent the population of massive clumps. In an effort to reexamine the origins of this conclusion, we use ammonia line data from the Green Bank Ammonia Survey and Planck-calibrated dust emission data from Herschel to estimate the masses and kinetic and gravitational energies for dense clumps in the Gould Belt clouds. We show that several types of systematic error can enhance the appearance of low kinetic-to-gravitational energy ratios: insufficient removal of foreground and background material; ignoring the kinetic energy associated with velocity differences across a resolved cloud; and overcorrecting for stratification when evaluating the gravitational energy. Using an analysis designed to avoid these errors, we find that the most massive Gould Belt clumps harbor virial motions, rather than subvirial ones. As a by-product, we present a catalog of masses, energies, and virial energy ratios for 85 Gould Belt clumps.


2020 ◽  
Vol 904 (2) ◽  
pp. 172
Author(s):  
James Di Francesco ◽  
Jared Keown ◽  
Cassandra Fallscheer ◽  
Philippe André ◽  
Bilal Ladjelate ◽  
...  
Keyword(s):  

2020 ◽  
Vol 500 (4) ◽  
pp. 4257-4276
Author(s):  
E Fiorellino ◽  
D Elia ◽  
Ph André ◽  
A Men’shchikov ◽  
S Pezzuto ◽  
...  

ABSTRACT The Herschel Gould Belt survey mapped the nearby (d < 500 pc) star-forming regions to understand better how the prestellar phase influences the star formation process. Here, we report a complete census of dense cores in a ∼15 deg2 area of the Serpens star-forming region located between d ∼ 420 and 484 pc. The PACS and SPIRE cameras imaged this cloud from 70 to 500 μm. With the multiwavelength source extraction algorithm getsources, we extract 833 sources, of which 709 are starless cores and 124 are candidate protostellar cores. We obtain temperatures and masses for all the sample, classifying the starless cores in 604 prestellar cores and 105 unbound cores. Our census of sources is $80{{\ \rm per\ cent}}$ complete for M > 0.8 M⊙ overall. We produce the core mass function (CMF) and compare it with the initial mass function (IMF). The prestellar CMF is consistent with lognormal trend up to ∼2 M⊙, after which it follows a power law with slope of −2.05 ± 0.34. The tail of its CMF is steeper but still compatible with the IMF for the region we studied in this work. We also extract the filaments network of the Serpens region, finding that $81{{\ \rm per\ cent}}$ of prestellar cores lie on filamentary structures. The spatial association between cores and filamentary structure supports the paradigm, suggested by other Herschel observations, that prestellar cores mostly form on filaments. Serpens is confirmed to be a young, low-mass and active star-forming region.


2020 ◽  
Vol 641 ◽  
pp. A12 ◽  
Author(s):  
◽  
N. Aghanim ◽  
Y. Akrami ◽  
M. I. R. Alves ◽  
M. Ashdown ◽  
...  

Observations of the submillimetre emission from Galactic dust, in both total intensityIand polarization, have received tremendous interest thanks to thePlanckfull-sky maps. In this paper we make use of such full-sky maps of dust polarized emission produced from the third public release ofPlanckdata. As the basis for expanding on astrophysical studies of the polarized thermal emission from Galactic dust, we present full-sky maps of the dust polarization fractionp, polarization angleψ, and dispersion function of polarization angles 𝒮. The joint distribution (one-point statistics) ofpandNHconfirms that the mean and maximum polarization fractions decrease with increasingNH. The uncertainty on the maximum observed polarization fraction,pmax= 22.0−1.4+3.5% at 353 GHz and 80′ resolution, is dominated by the uncertainty on the Galactic emission zero level in total intensity, in particular towards diffuse lines of sight at high Galactic latitudes. Furthermore, the inverse behaviour betweenpand 𝒮 found earlier is seen to be present at high latitudes. This follows the 𝒮 ∝ p−1relationship expected from models of the polarized sky (including numerical simulations of magnetohydrodynamical turbulence) that include effects from only the topology of the turbulent magnetic field, but otherwise have uniform alignment and dust properties. Thus, the statistical properties ofp,ψ, and 𝒮 for the most part reflect the structure of the Galactic magnetic field. Nevertheless, we search for potential signatures of varying grain alignment and dust properties. First, we analyse the product map 𝒮 × p, looking for residual trends. While the polarization fractionpdecreases by a factor of 3−4 betweenNH = 1020 cm−2andNH = 2 × 1022 cm−2, out of the Galactic plane, this product 𝒮 × ponly decreases by about 25%. Because 𝒮 is independent of the grain alignment efficiency, this demonstrates that the systematic decrease inpwithNHis determined mostly by the magnetic-field structure and not by a drop in grain alignment. This systematic trend is observed both in the diffuse interstellar medium (ISM) and in molecular clouds of the Gould Belt. Second, we look for a dependence of polarization properties on the dust temperature, as we would expect from the radiative alignment torque (RAT) theory. We find no systematic trend of 𝒮 × pwith the dust temperatureTd, whether in the diffuse ISM or in the molecular clouds of the Gould Belt. In the diffuse ISM, lines of sight with high polarization fractionpand low polarization angle dispersion 𝒮 tend, on the contrary, to have colder dust than lines of sight with lowpand high 𝒮. We also compare thePlanckthermal dust polarization with starlight polarization data in the visible at high Galactic latitudes. The agreement in polarization angles is remarkable, and is consistent with what we expect from the noise and the observed dispersion of polarization angles in the visible on the scale of thePlanckbeam. The two polarization emission-to-extinction ratios,RP/pandRS/V, which primarily characterize dust optical properties, have only a weak dependence on the column density, and converge towards the values previously determined for translucent lines of sight. We also determine an upper limit for the polarization fraction in extinction,pV/E(B − V), of 13% at high Galactic latitude, compatible with the polarization fractionp ≈ 20% observed at 353 GHz. Taken together, these results provide strong constraints for models of Galactic dust in diffuse gas.


2020 ◽  
Vol 635 ◽  
pp. A34 ◽  
Author(s):  
V. Könyves ◽  
Ph. André ◽  
D. Arzoumanian ◽  
N. Schneider ◽  
A. Men’shchikov ◽  
...  

We present a detailed study of the Orion B molecular cloud complex (d ~ 400 pc), which was imaged with the PACS and SPIRE photometric cameras at wavelengths from 70 to 500 μm as part of the Herschel Gould Belt survey (HGBS). We release new high-resolution maps of column density and dust temperature for the whole complex, derived in the same consistent manner as for other HGBS regions. In the filamentary subregions NGC 2023 and 2024, NGC 2068 and 2071, and L1622, a total of 1768 starless dense cores were identified based on Herschel data, 490–804 (~28−45%) of which are self-gravitating prestellar cores that will likely form stars in the future. A total of 76 protostellar dense cores were also found. The typical lifetime of the prestellar cores was estimated to be tpreOrionB = 1.7−0.6+0.8Myr. The prestellar core mass function (CMF) derived for the whole sample of prestellar cores peaks at ~0.5 M⊙ (in dN/dlogM format) and is consistent with a power-law with logarithmic slope −1.27 ± 0.24 at the high-mass end, compared to the Salpeter slope of − 1.35. In the Orion B region, we confirm the existence of a transition in prestellar core formation efficiency (CFE) around a fiducial value AVbg ~ 7 mag in background visual extinction, which is similar to the trend observed with Herschel in other regions, such as the Aquila cloud. This is not a sharp threshold, however, but a smooth transition between a regime with very low prestellar CFE at AVbg < 5 and a regime with higher, roughly constant CFE at AVbg ≳ 10. The total mass in the form of prestellar cores represents only a modest fraction (~20%) of the dense molecular cloud gas above AVbg ≳ 7 mag. About 60–80% of the prestellar cores are closely associated with filaments, and this fraction increases up to >90% when a more complete sample of filamentary structures is considered. Interestingly, the median separation observed between nearest core neighbors corresponds to the typical inner filament width of ~0.1 pc, which is commonly observed in nearby molecular clouds, including Orion B. Analysis of the CMF observed as a function of background cloud column density shows that the most massive prestellar cores are spatially segregated in the highest column density areas, and suggests that both higher- and lower-mass prestellar cores may form in denser filaments.


2019 ◽  
Vol 874 (2) ◽  
pp. 147 ◽  
Author(s):  
Ronan Kerr ◽  
Helen Kirk ◽  
James Di Francesco ◽  
Jared Keown ◽  
Mike Chen ◽  
...  
Keyword(s):  

2019 ◽  
Vol 364 (1) ◽  
Author(s):  
B. Coşkunoğlu ◽  
O. Plevne ◽  
M. T. Özkan

Sign in / Sign up

Export Citation Format

Share Document