binding pockets
Recently Published Documents


TOTAL DOCUMENTS

488
(FIVE YEARS 181)

H-INDEX

44
(FIVE YEARS 8)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 538
Author(s):  
Jiale Gao ◽  
Nuoya Liu ◽  
Xiaomeng Zhang ◽  
En Yang ◽  
Yuzhu Song ◽  
...  

Amanita poisoning is one of the most deadly types of mushroom poisoning. α-Amanitin is the main lethal toxin in amanita, and the human-lethal dose is about 0.1 mg/kg. Most of the commonly used detection techniques for α-amanitin require expensive instruments. In this study, the α-amanitin aptamer was selected as the research object, and the stem-loop structure of the original aptamer was not damaged by truncating the redundant bases, in order to improve the affinity and specificity of the aptamer. The specificity and affinity of the truncated aptamers were determined using isothermal titration calorimetry (ITC) and gold nanoparticles (AuNPs), and the affinity and specificity of the aptamers decreased after truncation. Therefore, the original aptamer was selected to establish a simple and specific magnetic bead-based enzyme linked immunoassay (MELISA) method for α-amanitin. The detection limit was 0.369 μg/mL, while, in mushroom it was 0.372 μg/mL and in urine 0.337 μg/mL. Recovery studies were performed by spiking urine and mushroom samples with α-amanitin, and these confirmed the desirable accuracy and practical applicability of our method. The α-amanitin and aptamer recognition sites and binding pockets were investigated in an in vitro molecular docking environment, and the main binding bases of both were T3, G4, C5, T6, T7, C67, and A68. This study truncated the α-amanitin aptamer and proposes a method of detecting α-amanitin.


2022 ◽  
Author(s):  
Evianne Rovers ◽  
Matthieu Schapira

Proximity pharmacology (ProxPharm) is a novel paradigm in drug discovery where a small molecule brings two proteins in close proximity to elicit a signal, generally from one protein onto another. The potential of ProxPharm compounds as a new therapeutic modality is firmly established by proteolysis targeting chimeras (PROTACs) that bring an E3 ubiquitin ligase in proximity to a target protein to induce ubiquitination and subsequent degradation of the target protein. The concept can be expanded to induce other post-translational modifications via the recruitment of different types of protein-modifying enzymes. To survey the human proteome for opportunities in proximity pharmacology, we systematically mapped non-catalytic drug binding pockets on the structure of protein-modifying enzymes available from the Protein Databank. In addition to binding sites exploited by previously reported ProxPharm compounds, we identified putative ligandable non-catalytic pockets in 188 kinases, 42 phosphatases, 26 deubiquitinases, 9 methyltransferases, 7 acetyltransferases, 7 glycosyltransferases, 4 deacetylases, 3 demethylases and 2 glycosidases, including cavities occupied by chemical matter that may serve as starting points for future ProxPharm compounds. This systematic survey confirms that proximity pharmacology is a versatile modality with largely unexplored and promising potential, and reveals novel opportunities to pharmacologically rewire molecular circuitries.


2021 ◽  
Vol 11 ◽  
Author(s):  
Namkyoung Kim ◽  
Injae Shin ◽  
Younghoon Kim ◽  
Eunhye Jeon ◽  
Jiwon Lee ◽  
...  

RAS mutants are involved in approximately 30% of all human cancers and have been regarded as undruggable targets owing to relatively smooth protein surface and obscure binding pockets. In our previous study, we have demonstrated that GNF-7, a multi-targeted kinase inhibitor, possesses potent anti-proliferative activity against Ba/F3 cells transformed with NRAS-G12D. Based on our further analysis using Ba/F3 cells transformed with mtRAS, we discovered a series of pyrimido[4,5-d]pyrimidin-2-one analogues as mtRAS-signaling pathway blockers. In addition, our efforts expanded the assessment to cancer cells with mtRAS, which revealed that these substances are also capable of strongly suppressing the proliferation of various cancer cells harboring KRAS-G12D (AsPC-1), KRAS-G12V (SW480, DU-145), KRAS-G12C (H358), KRAS-G13D (MDA-MB-231), KRAS-Q61L (HT-29), and NRAS-Q61L (OCI-AML3). We herein report novel and potent mtRAS-signaling pathway blockers, SIJ1795 and SIJ1772, possessing 2 to 10-fold increased anti-proliferative activities compared to those of GNF-7 on cancer cells harboring mtRAS as well as on Ba/F3 cells transformed with mtRAS. Both SIJ1795 and SIJ1772 attenuate phosphorylation of RAS downstream molecules (AKT and MEK) and induce apoptosis and G0/G1 cell cycle arrest on cancer cells with mtRAS. Moreover, both substances substantially suppress the migration, invasion, and colony formation of cancer cells harboring mtRAS. Taken together, this study led us to identification of SIJ1795 and SIJ1772 capable of strongly inhibiting mtRAS-signaling pathway on cancer cells harboring mtRAS.


2021 ◽  
Author(s):  
Su Datt Lam ◽  
Vaishali P Waman ◽  
Christine Orengo ◽  
Jonathan Lees

AbstractCoronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 is an ongoing pandemic that causes significant health/socioeconomic burden. Variants of concern (VOCs) have emerged which may affect transmissibility, disease severity and re-infection risk. Most studies focus on the receptor-binding domain (RBD) of the Spike protein. However, some studies suggest that the Spike N-terminal domain (NTD) may have a role in facilitating virus entry via sialic-acid receptor binding. Furthermore, most VOCs include novel NTD variants. Recent analyses demonstrated that NTD insertions in VOCs tend to lie close to loop regions likely to be involved in binding sialic acids. We extended the structural characterisation of these putative sugar binding pockets and explored whether variants could enhance the binding to sialic acids and therefore to the host membrane, thereby contributing to increased transmissibility. We found that recent NTD insertions in VOCs (i.e., Gamma, Delta and Omicron variants) and emerging variants of interest (VOIs) (i.e., Iota, Lambda, Theta variants) frequently lie close to known and putative sugar-binding pockets. For some variants, including the recent Omicron VOC, we find increases in predicted sialic acid binding energy, compared to the original SARS-CoV-2, which may contribute to increased transmission. We examined the similarity of NTD across a range of related Betacoronaviruses to determine whether the putative sugar-binding pockets are sufficiently similar to be exploited in drug design. Despite global sequence and structure similarity, most sialic-acid binding pockets of NTD vary across related coronaviruses. Typically, SARS-CoV-2 possesses additional loops in these pockets that increase contact with polysaccharides. Our work suggests ongoing evolutionary tuning of the sugar-binding pockets in the virus. Whilst three of the pockets are too structurally variable to be amenable to pan Betacoronavirus drug design, we detected a fourth pocket that is highly structurally conserved and could therefore be investigated in pursuit of a generic drug. Our structure-based analyses help rationalise the effects of VOCs and provide hypotheses for experiments. For example, the Omicron variant, which has increased binding to sialic acids in pocket 3, has a rather unique insertion near pocket 3. Our work suggests a strong need for experimental monitoring of VOC changes in NTD.


2021 ◽  
Author(s):  
Nickolas Gantzler ◽  
Min-Bum Kim ◽  
Alexander Robinson ◽  
Maxwell W. Terban ◽  
Sanjit Ghose ◽  
...  

Metal-organic frameworks (MOFs) are promising nanoporous materials for the adsorptive capture and separation of noble gases at room temperature. Among the numerous MOFs synthesized and tested for noble gas separations, Ni(PyC)₂ (PyC = pyridine-4-carboxylate) exhibits one of the highest xenon/krypton selectivities at room temperature. Like lead-optimization in drug discovery, here we aim to tune the chemistry of Ni(PyC)₂, by appending a functional group to its PyC ligands, to maximize its Xe/Kr selectivity. To guide experiments in the laboratory, we virtually screen Ni(PyC-X)₂ (X=functional group) structures for noble gas separations by (i) constructing a library of Ni(PyC-X)₂ crystal structure models then (ii) using molecular simulations to predict noble gas (Xe, Kr, Ar) adsorption and selectivity at room temperature in each structure. The virtual screening predicts several Ni(PyC-X)₂ structures to exhibit a higher Xe/Kr, Xe/Ar, and Kr/Ar selectivity than the parent Ni(PyC)₂ MOF, with Ni(PyC-m-NH₂)₂ among them. In the laboratory, we synthesize Ni(PyC-m-NH₂)₂, determine its crystal structure by X-ray powder diffraction, and measure its Xe, Kr, and Ar adsorption isotherms (298 K). In agreement with our molecular simulations, the Xe/Kr, Xe/Ar, and Kr/Ar selectivities of Ni(PyC-m-NH₂)₂ exceed those of the parent Ni(PyC)₂. Particularly, Ni(PyC-m-NH₂)₂ exhibits a [derived from experimental, equilibrium adsorption isotherms] Xe/Kr selectivity of 20 at dilute conditions and 298 K, compared to 17 for Ni(PyC)₂. According to in situ X-ray diffraction, corroborated by molecular models, Ni(PyC-m-NH₂)₂ presents well-defined binding pockets tailored for Xe and organized along its one-dimensional channels. In addition to discovering the new, performant Ni(PyC-m-NH₂)₂ MOF for noble gas separations, our study illustrates the computation-informed optimization of the chemistry of a "lead" MOF to target adsorption of a specific gas.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tobias Raisch ◽  
Andreas Brockmann ◽  
Ulrich Ebbinghaus-Kintscher ◽  
Jörg Freigang ◽  
Oliver Gutbrod ◽  
...  

AbstractSlowpoke (Slo) potassium channels display extraordinarily high conductance, are synergistically activated by a positive transmembrane potential and high intracellular Ca2+ concentrations and are important targets for insecticides and antiparasitic drugs. However, it is unknown how these compounds modulate ion translocation and whether there are insect-specific binding pockets. Here, we report structures of Drosophila Slo in the Ca2+-bound and Ca2+-free form and in complex with the fungal neurotoxin verruculogen and the anthelmintic drug emodepside. Whereas the architecture and gating mechanism of Slo channels are conserved, potential insect-specific binding pockets exist. Verruculogen inhibits K+ transport by blocking the Ca2+-induced activation signal and precludes K+ from entering the selectivity filter. Emodepside decreases the conductance by suboptimal K+ coordination and uncouples ion gating from Ca2+ and voltage sensing. Our results expand the mechanistic understanding of Slo regulation and lay the foundation for the rational design of regulators of Slo and other voltage-gated ion channels.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tomas Kouba ◽  
Dominik Vogel ◽  
Sigurdur R. Thorkelsson ◽  
Emmanuelle R. J. Quemin ◽  
Harry M. Williams ◽  
...  

AbstractLassa virus is endemic in West Africa and can cause severe hemorrhagic fever. The viral L protein transcribes and replicates the RNA genome via its RNA-dependent RNA polymerase activity. Here, we present nine cryo-EM structures of the L protein in the apo-, promoter-bound pre-initiation and active RNA synthesis states. We characterize distinct binding pockets for the conserved 3’ and 5’ promoter RNAs and show how full-promoter binding induces a distinct pre-initiation conformation. In the apo- and early elongation states, the endonuclease is inhibited by two distinct L protein peptides, whereas in the pre-initiation state it is uninhibited. In the early elongation state, a template-product duplex is bound in the active site cavity together with an incoming non-hydrolysable nucleotide and the full C-terminal region of the L protein, including the putative cap-binding domain, is well-ordered. These data advance our mechanistic understanding of how this flexible and multifunctional molecular machine is activated.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Shan Zhou ◽  
Weiwei Wang ◽  
Xiaoting Zhou ◽  
Yuying Zhang ◽  
Yuezheng Lai ◽  
...  

Pathogenic mycobacteria pose a sustained threat to global human health. Recently, cytochrome bcc complexes have gained interest as targets for antibiotic drug development. However, there is currently no structural information for the cytochrome bcc complex from these pathogenic mycobacteria. Here, we report the structures of Mycobacterium tuberculosis cytochrome bcc alone (2.68 Å resolution) and in complex with clinical drug candidates Q203 (2.67 Å resolution) and TB47 (2.93 Å resolution) determined by single-particle cryo-electron microscopy. M. tuberculosis cytochrome bcc forms a dimeric assembly with endogenous menaquinone/menaquinol bound at the quinone/quinol-binding pockets. We observe Q203 and TB47 bound at the quinol-binding site and stabilized by hydrogen bonds with the side chains of QcrBThr313 and QcrBGlu314, residues that are conserved across pathogenic mycobacteria. These high-resolution images provide a basis for the design of new mycobacterial cytochrome bcc inhibitors that could be developed into broad-spectrum drugs to treat mycobacterial infections.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Yuna Lee ◽  
Akihiro Nakano ◽  
Saya Nakamura ◽  
Kenta Sakai ◽  
Mitsuru Tanaka ◽  
...  

AbstractThe aim of this study is to develop a dipeptide showing an adiponectin receptor 1 (AdipoR1) agonistic effect in skeletal muscle L6 myotubes. Based on the structure of the AdipoR1 agonist, AdipoRon, 15 synthetic dipeptides were targeted to promote glucose uptake in L6 myotubes. Tyr-Pro showed a significant increase in glucose uptake among the dipeptides, while other dipeptides, including Pro-Tyr, failed to exert this effect. Tyr-Pro induces glucose transporter 4 (Glut4) expression in the plasma membrane, along with adenosine monophosphate-activated protein kinase (AMPK) activation. In AdipoR1-knocked down cells, the promotion by Tyr-Pro was ameliorated, indicating that Tyr-Pro may directly interact with AdipoR1 as an agonist, followed by the activation of AMPK/Glut4 translocation in L6 myotubes. Molecular dynamics simulations revealed that a Tyr-Pro molecule was stably positioned in the two potential binding pockets (sites 1 and 2) of the seven-transmembrane receptor, AdipoR1, anchored in a virtual 1-palmitoyl-2-oleoyl-phosphatidylcholine membrane. In conclusion, we demonstrated the antidiabetic function of the Tyr-Pro dipeptide as a possible AdipoR1 agonist.


Author(s):  
Vaishali M. Patil ◽  
Anand Gaurav ◽  
Priyanka Garg ◽  
Neeraj Masand

Abstract Background The expression of hERG K+ channels is observed in various cancer cells including epithelial, neuronal, leukemic, and connective tissue. The role of hERG potassium channels in regulating the growth and death of cancer cells include cell proliferation, survival, secretion of proangiogenic factors, invasiveness, and metastasis. Methods In the reported study, an attempt has been made to investigate some non-cancer hERG blockers as potential cancer therapeutics using a computational drug repurposing strategy. Preliminary investigation for hERG blockers/non-blockers has identified 26 potential clinically approved compounds for further studies using molecular modeling. Results The interactions at the binding pockets have been investigated along with the prioritization based on the binding score. Some of the identified potential hERG inhibitors, i.e., Bromocriptine, Darglitazone, and Troglitazone, have been investigated to derive the mechanism of cancer inhibition. Conclusions The proposed mechanism for anti-cancer properties via hERG blocking for some of the potential compounds is required to be explored using other experimental methodologies. The drug repurposing approach applied to investigate anti-cancer therapeutics may direct to provide a therapeutic solution to late-stage cancer and benefit a significant population of patients.


Sign in / Sign up

Export Citation Format

Share Document