allee effect
Recently Published Documents


TOTAL DOCUMENTS

775
(FIVE YEARS 276)

H-INDEX

53
(FIVE YEARS 7)

Author(s):  
Rong Liu ◽  
Guirong Liu

This paper is concerned with a stochastic population model with Allee effect and jumps. First, we show the global existence of almost surely positive solution to the model. Next, exponential extinction and persistence in mean are discussed. Then, we investigated the global attractivity and stability in distribution. At last, some numerical results are given. The results show that if attack rate $a$ is in the intermediate range or very large, the population will go extinct. Under the premise that attack rate $a$ is less than growth rate $r$, if the noise intensity or jump is relatively large, the population will become extinct; on the contrary, the population will be persistent in mean. The results in this paper generalize and improve the previous related results.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Ada Altieri ◽  
Giulio Biroli

We analyze the role of the Allee effect - a positive correlation between population density and mean individual fitness - for ecological communities formed by a large number of species. Our study is performed using the generalized Lotka-Volterra model with random interactions between species. We obtain the phase diagram and analyze the nature of the multiple equilibria phase. Remarkable differences emerge with respect to the logistic growth case, thus revealing the major role played by the functional response in determining aggregate behaviors of large ecosystems.


2022 ◽  
Vol 101 ◽  
pp. 111-131
Author(s):  
Lisha Wang ◽  
Zhipeng Qiu ◽  
Tao Feng ◽  
Yun Kang

2021 ◽  
Vol 84 (1-2) ◽  
Author(s):  
Deeptajyoti Sen ◽  
Saktipada Ghorai ◽  
Malay Banerjee ◽  
Andrew Morozov

AbstractThe use of predator–prey models in theoretical ecology has a long history, and the model equations have largely evolved since the original Lotka–Volterra system towards more realistic descriptions of the processes of predation, reproduction and mortality. One important aspect is the recognition of the fact that the growth of a population can be subject to an Allee effect, where the per capita growth rate increases with the population density. Including an Allee effect has been shown to fundamentally change predator–prey dynamics and strongly impact species persistence, but previous studies mostly focused on scenarios of an Allee effect in the prey population. Here we explore a predator–prey model with an ecologically important case of the Allee effect in the predator population where it occurs in the numerical response of predator without affecting its functional response. Biologically, this can result from various scenarios such as a lack of mating partners, sperm limitation and cooperative breeding mechanisms, among others. Unlike previous studies, we consider here a generic mathematical formulation of the Allee effect without specifying a concrete parameterisation of the functional form, and analyse the possible local bifurcations in the system. Further, we explore the global bifurcation structure of the model and its possible dynamical regimes for three different concrete parameterisations of the Allee effect. The model possesses a complex bifurcation structure: there can be multiple coexistence states including two stable limit cycles. Inclusion of the Allee effect in the predator generally has a destabilising effect on the coexistence equilibrium. We also show that regardless of the parametrisation of the Allee effect, enrichment of the environment will eventually result in extinction of the predator population.


Author(s):  
Haixia Li ◽  
Wenbin Yang ◽  
Meihua Wei ◽  
Aili Wang

In this paper, we investigate a diffusive modified Leslie–Gower predator–prey system with double Allee effect on prey. The global existence, uniqueness and a priori bound of positive solutions are determined. The existence and local stability of constant steady–state solutions are analyzed. Next, we induce the nonexistence of nonconstant positive steady–state solutions, which indicates the effect of large diffusivity. Furthermore, we discuss the steady–state bifurcation and the existence of nonconstant positive steady–state solutions by the bifurcation theory. In addition, Hopf bifurcations of the spatially homogeneous and inhomogeneous periodic orbits are studied. Finally, we make some numerical simulations to validate and complement the theoretical analysis. Our results demonstrate that the dynamics of the system with double Allee effect and modified Leslie–Gower scheme are richer and more complex.


2021 ◽  
Vol 31 (16) ◽  
Author(s):  
Xuan Tian ◽  
Shangjiang Guo

A diffusive predator–prey model with Allee effect and constant stocking rate for predator is investigated and it is shown that Allee effect is the decisive factor driving the formation of Turing pattern. Furthermore, it is observed that Turing pattern appears only when the diffusion rate of the prey is faster than that of the predator, which is just opposite to the condition of Turing pattern in the classical predator–prey system. Some sufficient conditions are obtained to ensure the asymptotical stability of a spatially homogeneous steady-state solution. The existence and nonexistence of positive nonconstant steady-state solutions are investigated to understand the mechanisms of generating spatiotemporal patterns. Furthermore, Hopf and steady-state bifurcations are analyzed in detail by using Lyapunov–Schmidt reduction.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3193
Author(s):  
Yanfei Du ◽  
Ben Niu ◽  
Junjie Wei

This paper deals with a diffusive predator–prey model with two delays. First, we consider the local bifurcation and global dynamical behavior of the kinetic system, which is a predator–prey model with cooperative hunting and Allee effect. For the model with weak cooperation, we prove the existence of limit cycle, and a loop of heteroclinic orbits connecting two equilibria at a threshold of conversion rate p=p#, by investigating stable and unstable manifolds of saddles. When p>p#, both species go extinct, and when p<p#, there is a separatrix. The species with initial population above the separatrix finally become extinct, and the species with initial population below it can be coexisting, oscillating sustainably, or surviving of the prey only. In the case with strong cooperation, we exhibit the complex dynamics of system, including limit cycle, loop of heteroclinic orbits among three equilibria, and homoclinic cycle with the aid of theoretical analysis or numerical simulation. There may be three stable states coexisting: extinction state, coexistence or sustained oscillation, and the survival of the prey only, and the attraction basin of each state is obtained in the phase plane. Moreover, we find diffusion may induce Turing instability and Turing–Hopf bifurcation, leaving the system with spatially inhomogeneous distribution of the species, coexistence of two different spatial-temporal oscillations. Finally, we consider Hopf and double Hopf bifurcations of the diffusive system induced by two delays: mature delay of the prey and gestation delay of the predator. Normal form analysis indicates that two spatially homogeneous periodic oscillations may coexist by increasing both delays.


Sign in / Sign up

Export Citation Format

Share Document