circuit formation
Recently Published Documents


TOTAL DOCUMENTS

220
(FIVE YEARS 90)

H-INDEX

27
(FIVE YEARS 4)

2022 ◽  
Vol 15 ◽  
Author(s):  
Gloria S. Lee ◽  
Devon L. Graham ◽  
Brenda L. Noble ◽  
Taylor S. Trammell ◽  
Deirdre M. McCarthy ◽  
...  

Developmental dysregulation of dopamine D2 receptors (D2Rs) alters neuronal migration, differentiation, and behavior and contributes to the psychopathology of neurological and psychiatric disorders. The current study is aimed at identifying how cell-specific loss of D2Rs in the cerebral cortex may impact neurobehavioral and cellular development, in order to better understand the roles of this receptor in cortical circuit formation and brain disorders. We deleted D2R from developing cortical GABAergic interneurons (Nkx2.1-Cre) or from developing telencephalic glutamatergic neurons (Emx1-Cre). Conditional knockouts (cKO) from both lines, Drd2fl/fl, Nkx2.1-Cre+ (referred to as GABA-D2R-cKO mice) or Drd2fl/fl, Emx1-Cre+ (referred to as Glu-D2R-cKO mice), exhibited no differences in simple tests of anxiety-related or depression-related behaviors, or spatial or nonspatial working memory. Both GABA-D2R-cKO and Glu-D2R-cKO mice also had normal basal locomotor activity, but GABA-D2R-cKO mice expressed blunted locomotor responses to the psychotomimetic drug MK-801. GABA-D2R-cKO mice exhibited improved motor coordination on a rotarod whereas Glu-D2R-cKO mice were normal. GABA-D2R-cKO mice also exhibited spatial learning deficits without changes in reversal learning on a Barnes maze. At the cellular level, we observed an increase in PV+ cells in the frontal cortex of GABA-D2R-cKO mice and no noticeable changes in Glu-D2R-cKO mice. These data point toward unique and distinct roles for D2Rs within excitatory and inhibitory neurons in the regulation of behavior and interneuron development, and suggest that location-biased D2R pharmacology may be clinically advantageous to achieve higher efficacy and help avoid unwanted effects.


2021 ◽  
Author(s):  
Anadika R Prasad ◽  
Matthew P Bostock ◽  
Ines Lago-Baldaia ◽  
Zaynab Housseini ◽  
Vilaiwan M Fernandes

Precise neuronal numbers are required for circuit formation and function. Known strategies to control neuronal numbers involve regulating either cell proliferation or survival. In the developing Drosophila visual system photoreceptors from the eye-disc induce their target field, the lamina, one column at a time. Although each column initially contains ~6 precursors, only 5 differentiate into neurons of unique identities (L1-L5); the extra precursor undergoes apoptosis. We uncovered that Hedgehog signalling patterns columns, such that the 2 precursors experiencing the lowest signalling activity are specified as L5s; only one differentiates while the other extra precursor dies. We showed that a glial population called the outer chiasm giant glia (xgO), which reside below the lamina, relays differentiation signals from photoreceptors to induce L5 differentiation. The precursors nearest to xgO differentiate into L5s and antagonise inductive signalling to prevent the extra precursors from differentiating, resulting in their death. Thus, tissue architecture and feedback from young neurons fine-tune differentiation signals from glia to limit the number of neurons induced.


2021 ◽  
Vol 15 ◽  
Author(s):  
Giasuddin Ahmed ◽  
Yohei Shinmyo

Axon guidance proteins play key roles in the formation of neural circuits during development. We previously identified an axon guidance cue, named draxin, that has no homology with other axon guidance proteins. Draxin is essential for the development of various neural circuits including the spinal cord commissure, corpus callosum, and thalamocortical projections. Draxin has been shown to not only control axon guidance through netrin-1 receptors, deleted in colorectal cancer (Dcc), and neogenin (Neo1) but also modulate netrin-1-mediated axon guidance and fasciculation. In this review, we summarize the multifaceted functions of draxin and netrin-1 signaling in neural circuit formation in the central nervous system. Furthermore, because recent studies suggest that the distributions and functions of axon guidance cues are highly regulated by glycoproteins such as Dystroglycan and Heparan sulfate proteoglycans, we discuss a possible function of glycoproteins in draxin/netrin-1-mediated axon guidance.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (11) ◽  
pp. e1009857
Author(s):  
Weiyue Ji ◽  
Lani F. Wu ◽  
Steven J. Altschuler

A fascinating question in neuroscience is how ensembles of neurons, originating from different locations, extend to the proper place and by the right time to create precise circuits. Here, we investigate this question in the Drosophila visual system, where photoreceptors re-sort in the lamina to form the crystalline-like neural superposition circuit. The repeated nature of this circuit allowed us to establish a data-driven, standardized coordinate system for quantitative comparison of sparsely perturbed growth cones within and across specimens. Using this common frame of reference, we investigated the extension of the R3 and R4 photoreceptors, which is the only pair of symmetrically arranged photoreceptors with asymmetric target choices. Specifically, we found that extension speeds of the R3 and R4 growth cones are inherent to their cell identities. The ability to parameterize local regularity in tissue organization facilitated the characterization of ensemble cellular behaviors and dissection of mechanisms governing neural circuit formation.


2021 ◽  
Author(s):  
Mai Ahmed ◽  
Yutaka Kojima ◽  
Ichiro Masai

In the vertebrate retina, an interplay between retinal ganglion cells (RGCs), amacrine and bipolar cells establishes a synaptic layer called the inner plexiform layer (IPL). This circuit conveys signals from photoreceptors to visual centers in the brain. However, the molecular mechanisms involved in its development remain poorly understood. Striatin-interacting protein 1 (Strip1) is a core component of the STRIPAK complex, and it has shown emerging roles in embryonic morphogenesis. Here, we uncover the importance of Strip1 in inner retina development. Using zebrafish, we show that loss of Strip1 causes defects in IPL formation. In strip1 mutants, RGCs undergo dramatic cell death shortly after birth. Amacrine and bipolar cells subsequently invade the degenerating RGC layer, leading to a disorganized IPL. Thus, Strip1 promotes IPL formation through RGC maintenance. Mechanistically, zebrafish Strip1 interacts with its STRIPAK partner, Striatin3, to promote RGC survival by suppressing Jun-mediated apoptosis. In addition to its function in RGC maintenance, Strip1 is required for RGC dendritic patterning, which likely contributes to proper IPL formation. Taken together, we propose that a series of Strip1-mediated regulatory events coordinates inner retinal circuit formation by maintaining RGCs during development, which ensures proper positioning and neurite patterning of inner retinal neurons.


2021 ◽  
Vol 118 (40) ◽  
pp. e2108239118
Author(s):  
Wenshu Luo ◽  
Matteo Egger ◽  
Andor Domonkos ◽  
Lin Que ◽  
David Lukacsovich ◽  
...  

Circuit formation in the central nervous system has been historically studied during development, after which cell-autonomous and nonautonomous wiring factors inactivate. In principle, balanced reactivation of such factors could enable further wiring in adults, but their relative contributions may be circuit dependent and are largely unknown. Here, we investigated hippocampal mossy fiber sprouting to gain insight into wiring mechanisms in mature circuits. We found that sole ectopic expression of Id2 in granule cells is capable of driving mossy fiber sprouting in healthy adult mouse and rat. Mice with the new mossy fiber circuit solved spatial problems equally well as controls but appeared to rely on local rather than global spatial cues. Our results demonstrate reprogrammed connectivity in mature neurons by one defined factor and an assembly of a new synaptic circuit in adult brain.


2021 ◽  
Vol 22 (19) ◽  
pp. 10312
Author(s):  
Takuma Kumamoto ◽  
Tomokazu Tsurugizawa

Astrocytes provide trophic and metabolic support to neurons and modulate circuit formation during development. In addition, astrocytes help maintain neuronal homeostasis through neurovascular coupling, blood–brain barrier maintenance, clearance of metabolites and nonfunctional proteins via the glymphatic system, extracellular potassium buffering, and regulation of synaptic activity. Thus, astrocyte dysfunction may contribute to a myriad of neurological disorders. Indeed, astrocyte dysfunction during development has been implicated in Rett disease, Alexander’s disease, epilepsy, and autism, among other disorders. Numerous disease model mice have been established to investigate these diseases, but important preclinical findings on etiology and pathophysiology have not translated into clinical interventions. A multidisciplinary approach is required to elucidate the mechanism of these diseases because astrocyte dysfunction can result in altered neuronal connectivity, morphology, and activity. Recent progress in neuroimaging techniques has enabled noninvasive investigations of brain structure and function at multiple spatiotemporal scales, and these technologies are expected to facilitate the translation of preclinical findings to clinical studies and ultimately to clinical trials. Here, we review recent progress on astrocyte contributions to neurodevelopmental and neuropsychiatric disorders revealed using novel imaging techniques, from microscopy scale to mesoscopic scale.


Sign in / Sign up

Export Citation Format

Share Document