somatic fusion
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 4)

H-INDEX

14
(FIVE YEARS 0)

Author(s):  
Nicolas G. Brukman ◽  
Xiaohui Li ◽  
Benjamin Podbilewicz

Gamete fusion is the climax of fertilization in all sexually reproductive organisms, from unicellular fungi to humans. Similarly to other cell-cell fusion events, gamete fusion is mediated by specialized proteins, named fusogens, that overcome the energetic barriers during this process. In recent years, HAPLESS 2/GENERATIVE CELL-SPECIFIC 1 (HAP2/GCS1) was identified as the fusogen mediating sperm-egg fusion in flowering plants and protists, being both essential and sufficient for the membrane merger in some species. The identification of HAP2/GCS1 in invertebrates, opens the possibility that a similar fusogen may be used in vertebrate fertilization. HAP2/GCS1 proteins share a similar structure with two distinct families of exoplasmic fusogens: the somatic Fusion Family (FF) proteins discovered in nematodes, and class II viral glycoproteins (e.g., rubella and dengue viruses). Altogether, these fusogens form the Fusexin superfamily. While some attributes are shared among fusexins, for example the overall structure and the possibility of assembly into trimers, some other characteristics seem to be specific, such as the presence or not of hydrophobic loops or helices at the distal tip of the protein. Intriguingly, HAP2/GCS1 or other fusexins have neither been identified in vertebrates nor in fungi, raising the question of whether these genes were lost during evolution and were replaced by other fusion machinery or a significant divergence makes their identification difficult. Here, we discuss the biology of HAP2/GCS1, its involvement in gamete fusion and the structural, mechanistic and evolutionary relationships with other fusexins.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255842
Author(s):  
Manjul Dutt ◽  
Lamiaa M. Mahmoud ◽  
Karen Chamusco ◽  
Daniel Stanton ◽  
Christine D. Chase ◽  
...  

The Australian finger lime is a unique citrus species that has gained importance due to its unique fruit characteristics and perceived tolerance to Huanglongbing (HLB), an often-fatal disease of citrus trees. In this study, we developed allotetraploid finger lime hybrids and cybrids by utilizing somatic cell fusion techniques to fuse diploid ‘OLL8’ sweet orange or ‘Page’ tangelo callus-derived protoplasts with finger lime (FL) mesophyll-derived protoplasts. Six somatic fusions were regenerated from the ‘OLL8’ + FL fusion, while three putative cybrids were regenerated from the ‘Page’ + FL fusion. Ploidy levels and nuclear-expressed sequence tag derived simple sequence repeat (EST-SSR) markers confirmed the somatic hybrid production, and mitochondrial DNA primer sets confirmed the cybrid nature. Several trees produced by the somatic fusion remained HLB negative even after 6 years of growth in an HLB-endemic environment. Pathogenesis related (PR) and other genes that are often upregulated in HLB-tolerant trees were also upregulated in our somatic fusions. These newly developed somatic fusions and cybrids could potentially be used as breeding parents to develop the next generation of improved HLB-tolerant rootstocks and scions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alexey A. Grum-Grzhimaylo ◽  
Eric Bastiaans ◽  
Joost van den Heuvel ◽  
Cristina Berenguer Millanes ◽  
Alfons J. M. Debets ◽  
...  

AbstractSome multicellular organisms can fuse because mergers potentially provide mutual benefits. However, experimental evolution in the fungus Neurospora crassa has demonstrated that free fusion of mycelia favours cheater lineages, but the mechanism and evolutionary dynamics of this exploitation are unknown. Here we show, paradoxically, that all convergently evolved cheater lineages have similar fusion deficiencies. These mutants are unable to initiate fusion but retain access to wild-type mycelia that fuse with them. This asymmetry reduces cheater-mutant contributions to somatic substrate-bound hyphal networks, but increases representation of their nuclei in the aerial reproductive hyphae. Cheaters only benefit when relatively rare and likely impose genetic load reminiscent of germline senescence. We show that the consequences of somatic fusion can be unequally distributed among fusion partners, with the passive non-fusing partner profiting more. We discuss how our findings may relate to the extensive variation in fusion frequency of fungi found in nature.


2020 ◽  
Author(s):  
Alexey A. Grum-Grzhimaylo ◽  
Eric Bastiaans ◽  
Joost van den Heuvel ◽  
Cristina Berenguer Millanes ◽  
Alfons J.M. Debets ◽  
...  

AbstractSome multicellular organisms can fuse because mergers potentially provide mutual benefits. However, experimental evolution in the fungus Neurospora crassa has demonstrated that free fusion of mycelia favours cheater lineages, but the mechanism and evolutionary dynamics of dishonest exploitation are unknown. Here we show, paradoxically, that all convergently evolved cheater lineages have similar fusion deficiencies. These mutants are unable to initiate fusion but retain access to wild-type mycelia that fuse with them. This asymmetry reduces cheater-mutant contributions to somatic substrate-bound hyphal networks, but increases representation of their nuclei in the aerial reproductive hyphae. Cheaters only benefit when relatively rare and likely impose genetic load reminiscent of germline senescence. We show that the consequences of somatic fusion can be unequally distributed among fusion partners, with the passive non-fusing partner profiting more. We discuss how our findings may relate to the extensive variation in fusion frequency of fungi found in nature.


Evolution ◽  
2015 ◽  
Vol 69 (4) ◽  
pp. 1091-1099 ◽  
Author(s):  
Eric Bastiaans ◽  
Alfons J. M. Debets ◽  
Duur K. Aanen

2014 ◽  
Author(s):  
Daniel Nicorici ◽  
Mihaela Satalan ◽  
Henrik Edgren ◽  
Sara Kangaspeska ◽  
Astrid Murumagi ◽  
...  

FusionCatcher is a software tool for finding somatic fusion genes in paired-end RNA-sequencing data from human or other vertebrates. FusionCatcher achieves competitive detection rates and real-time PCR validation rates in RNA-sequencing data from tumor cells. FusionCatcher is available at http://code.google.com/p/fusioncatcher


2014 ◽  
Vol 369 (1646) ◽  
pp. 20130448 ◽  
Author(s):  
E. Bastiaans ◽  
D. K. Aanen ◽  
A. J. M. Debets ◽  
R. F. Hoekstra ◽  
B. Lestrade ◽  
...  

The replication and segregation of multi-copy mitochondrial DNA (mtDNA) are not under strict control of the nuclear DNA. Within-cell selection may thus favour variants with an intracellular selective advantage but a detrimental effect on cell fitness. High relatedness among the mtDNA variants of an individual is predicted to disfavour such deleterious selfish genetic elements, but experimental evidence for this hypothesis is scarce. We studied the effect of mtDNA relatedness on the opportunities for suppressive mtDNA variants in the fungus Neurospora carrying the mitochondrial mutator plasmid pKALILO. During growth, this plasmid integrates into the mitochondrial genome, generating suppressive mtDNA variants. These mtDNA variants gradually replace the wild-type mtDNA, ultimately culminating in growth arrest and death. We show that regular sequestration of mtDNA variation is required for effective selection against suppressive mtDNA variants. First, bottlenecks in the number of mtDNA copies from which a ‘ Kalilo ’ culture started significantly increased the maximum lifespan and variation in lifespan among cultures. Second, restrictions to somatic fusion among fungal individuals, either by using anastomosis-deficient mutants or by generating allotype diversity, prevented the accumulation of suppressive mtDNA variants. We discuss the implications of these results for the somatic accumulation of mitochondrial defects during ageing.


Planta ◽  
2010 ◽  
Vol 231 (5) ◽  
pp. 1201-1210 ◽  
Author(s):  
Fengning Xiang ◽  
Junfeng Wang ◽  
Chunhui Xu ◽  
Guangmin Xia

BioEssays ◽  
2008 ◽  
Vol 30 (11-12) ◽  
pp. 1193-1203 ◽  
Author(s):  
Duur K. Aanen ◽  
Alfons J.M. Debets ◽  
J. Arjan G.M. de Visser ◽  
Rolf F. Hoekstra

Sign in / Sign up

Export Citation Format

Share Document