independent vector analysis
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 39)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Rogers F Silva ◽  
Eswar Damaraju ◽  
Xinhui Li ◽  
Peter Kochonov ◽  
Aysenil Belger ◽  
...  

With the increasing availability of large-scale multimodal neuroimaging datasets, it is necessary to develop data fusion methods which can extract cross-modal features. A general framework, multidataset independent subspace analysis (MISA), has been developed to encompass multiple blind source separation approaches and identify linked cross-modal components in multiple datasets. In this work we utilized the multimodal independent vector analysis model in MISA to directly identify meaningful linked features across three neuroimaging modalities --- structural magnetic resonance imaging (MRI), resting state functional MRI and diffusion MRI --- in two large independent datasets, one comprising of healthy subjects and the other including patients with schizophrenia. Results show several linked subject profiles (the sources/components) that capture age-associated reductions, schizophrenia-related biomarkers, sex effects, and cognitive performance.


Algorithms ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 165
Author(s):  
Shiyu Guo ◽  
Mengna Shi ◽  
Yanqi Zhou ◽  
Jiayin Yu ◽  
Erfu Wang

As the main method of information transmission, it is particularly important to ensure the security of speech communication. Considering the more complex multipath channel transmission situation in the wireless communication of speech signals and separating or extracting the source signal from the convolutional signal are crucial steps in obtaining source information. In this paper, chaotic masking technology is used to guarantee the transmission safety of speech signals, and a fast fixed-point independent vector analysis algorithm is used to solve the problem of convolutional blind source separation. First, the chaotic masking is performed before the speech signal is sent, and the convolutional mixing process of multiple signals is simulated by impulse response filter. Then, the observed signal is transformed to the frequency domain by short-time Fourier transform, and instantaneous blind source separation is performed using a fast fixed-point independent vector analysis algorithm. The algorithm can preserve the high-order statistical correlation between frequencies to solve the permutation ambiguity problem in independent component analysis. Simulation experiments show that this algorithm can efficiently complete the blind extraction of convolutional signals, and the quality of recovered speech signals is better. It provides a solution for the secure transmission and effective separation of speech signals in multipath transmission channels.


Sign in / Sign up

Export Citation Format

Share Document