bet protein
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 65)

H-INDEX

28
(FIVE YEARS 7)

2022 ◽  
Vol 119 (1) ◽  
pp. e2110812119
Author(s):  
Nasiha S. Ahmed ◽  
Jovylyn Gatchalian ◽  
Josephine Ho ◽  
Mannix J. Burns ◽  
Nasun Hah ◽  
...  

Macrophages induce a number of inflammatory response genes in response to stimulation with microbial ligands. In response to endotoxin Lipid A, a gene-activation cascade of primary followed by secondary-response genes is induced. Epigenetic state is an important regulator of the kinetics, specificity, and mechanism of gene activation of these two classes. In particular, SWI/SNF chromatin-remodeling complexes are required for the induction of secondary-response genes, but not primary-response genes, which generally exhibit open chromatin. Here, we show that a recently discovered variant of the SWI/SNF complex, the noncanonical BAF complex (ncBAF), regulates secondary-response genes in the interferon (IFN) response pathway. Inhibition of bromodomain-containing protein 9 (BRD9), a subunit of the ncBAF complex, with BRD9 bromodomain inhibitors (BRD9i) or a degrader (dBRD9) led to reduction in a number of interferon-stimulated genes (ISGs) following stimulation with endotoxin lipid A. BRD9-dependent genes overlapped highly with a subset of genes differentially regulated by BET protein inhibition with JQ1 following endotoxin stimulation. We find that the BET protein BRD4 is cobound with BRD9 in unstimulated macrophages and corecruited upon stimulation to ISG promoters along with STAT1, STAT2, and IRF9, components of the ISGF3 complex activated downstream of IFN-alpha receptor stimulation. In the presence of BRD9i or dBRD9, STAT1-, STAT2-, and IRF9-binding is reduced, in some cases with reduced binding of BRD4. These results demonstrate a specific role for BRD9 and the ncBAF complex in ISG activation and identify an activity for BRD9 inhibitors and degraders in dampening endotoxin- and IFN-dependent gene expression.


2021 ◽  
Vol 17 (S9) ◽  
Author(s):  
Jan O Johansson ◽  
Jeffrey L. Cummings ◽  
Henrik Zetterberg ◽  
Bengt Winblad ◽  
Mike Sweeney ◽  
...  

2021 ◽  
Author(s):  
Irene Chen ◽  
James Edward Longbotham ◽  
Sarah McMahon ◽  
Rahul Suryawanshi ◽  
Jared Carlson-Stevermer ◽  
...  

Inhibitors of Bromodomain and Extra-terminal domain (BET) proteins are possible anti-SARS-CoV-2 prophylactics as they downregulate angiotensin-converting enzyme 2 (ACE2). Here, we show that BET proteins should not be inactivated therapeutically as they are critical antiviral factors at the post-entry level. Knockouts of BRD3 or BRD4 in cells overexpressing ACE2 exacerbate SARS-CoV-2 infection; the same is observed when cells with endogenous ACE2 expression are treated with BET inhibitors during infection, and not before. Viral replication and mortality are also enhanced in BET inhibitor-treated mice overexpressing ACE2. BET inactivation suppresses interferon production induced by SARS-CoV-2, a process phenocopied by the envelope (E) protein previously identified as a possible "histone mimetic." E protein, in an acetylated form, directly binds the second bromodomain of BRD4. Our data support a model where SARS-CoV-2 E protein evolved to antagonize interferon responses via BET protein inhibition; this neutralization should not be further enhanced with BET inhibitor treatment.


2021 ◽  
Vol 83 (4) ◽  
pp. 1703-1715
Author(s):  
Jeffrey Cummings ◽  
Gregory G. Schwartz ◽  
Stephen J. Nicholls ◽  
Aziz Khan ◽  
Chris Halliday ◽  
...  

Background: Epigenetic changes may contribute importantly to cognitive decline in late life including Alzheimer’s disease (AD) and vascular dementia (VaD). Bromodomain and extra-terminal (BET) proteins are epigenetic “readers” that may distort normal gene expression and contribute to chronic disorders. Objective: To assess the effects of apabetalone, a small molecule BET protein inhibitor, on cognitive performance of patients 70 years or older participating in a randomized trial of patients at high risk for major cardiovascular events (MACE). Methods: The Montreal Cognitive Assessment (MoCA) was performed on all patients 70 years or older at the time of randomization. 464 participants were randomized to apabetalone or placebo in the cognition sub-study. In a prespecified analysis, participants were assigned to one of three groups: MoCA score≥26 (normal performance), MoCA score 25–22 (mild cognitive impairment), and MoCA score≤21 (dementia). Exposure to apabetalone was equivalent in the treatment groups in each MoCA-defined group. Results: Apabetalone was associated with an increased total MoCA score in participants with baseline MoCA score of≤21 (p = 0.02). There was no significant difference in change from baseline in the treatment groups with higher MoCA scores. In the cognition study, more patients randomized to apabetalone discontinued study drug for adverse effects (11.3% versus 7.9%). Conclusion: In this randomized controlled study, apabetalone was associated with improved cognition as measured by MoCA scores in those with baseline scores of 21 or less. BET protein inhibitors warrant further investigation for late life cognitive disorders.


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
S Mohammed ◽  
M A Mattia ◽  
G K Gergely ◽  
G S Gaia ◽  
S A Ambrosini ◽  
...  

Abstract Background Peripheral artery disease (PAD) is highly prevalent in people with type 2 diabetes and associates with chronic limb ischemia and poor prognosis. Understanding the mechanisms of impaired blood vessel growth in diabetic patients is of paramount importance to develop new angiogenic therapies in this setting. Dysregulation of epigenetic mechanisms of gene transcription in vascular cells contributes to cardiovascular disease development but is currently not targeted by therapies. Apabetalone (RVX-208) – an FDA approved small molecule inhibitor of the epigenetic readers bromodomain and extra-terminal (BET) proteins – has recently shown to modulate transcriptional programs implicated in vascular inflammation and atherosclerosis. Purpose To investigate RVX-208 effects in modulating angiogenic response and post-ischemic vascularization in diabetes. Methods Primary human aortic endothelial cells (HAECs) were exposed to normal glucose (NG, 5 mM) or high glucose (HG, 20 mM) for 48 hours in presence of RVX-208 (20μM) or vehicle (DMSO). Scratch and tube formation assays were performed to investigate the impact of RVX-208 on angiogenic properties of HAECs. T1D mice (streptozotocin-induced diabetes) and T2D mice (Lepdb/db) were orally treated with apabetalone or vehicle for 5 days. Hindlimb ischemia was induced in T1D mice & blood flow recovery analysed at 30 minutes, 7 and 14 days by laser Doppler imaging. Sprouting and matrigel plug assays were performed in Lepdb/db mice. Gastrocnemius muscle samples from patients with and without T2D were employed to translate our experimental findings. Results HG impaired HAECs migration and tube formation as compared to NG, whereas treatment with RVX-208 rescued HG-induced impairment of angiogenic properties. Real time PCR arrays in HG-treated HAECs showed that RVX-208 treatment prevents the dysregulation of genes implicated in endothelial migration, sprouting and inflammation, namely the anti-angiogenic molecule thrombospondin (THBS1), VEGF-A, IL-1β, IL-6, VCAM-1, and CXCL1. Of interest, both gene silencing of BET protein (BRD4) or its pharmacological inhibition by RVX-208 reduced THBS1 expression while restoring VEGFA levels in HG-treated HAECs. ChIP assays showed the enrichment of both BRD4 and the active chromatin mark H3K27Ac on THBS1 promoter. Mechanistic experiments uncovered the inhibitory role of THBS1 on VEGFA signalling, as also confirmed by STRING analysis. Treatment of T1D mice with RVX-208 improved blood flow reperfusion and vascular density at 14 days as compared to vehicle-treated animals. Moreover, RVX-208 restored endothelial sprouting in T2D-Lepdb/db mice. Of clinical relevance, THBS1 was upregulated while VEGFA expression was reduced in gastrocnemius muscle specimens from T2D patients with PAD as compared to non-diabetic controls. Conclusion In vivo targeting of BET-proteins by RVX-208 may represents a novel therapeutic approach to boost post-ischemic neovascularization in diabetes. FUNDunding Acknowledgement Type of funding sources: Public Institution(s). Main funding source(s): University of Zurich


Author(s):  
Katherine L. Jones ◽  
Dominic M. Beaumont ◽  
Sharon G. Bernard ◽  
Rino A. Bit ◽  
Simon P. Campbell ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wenyu Wang ◽  
Yen-An Tang ◽  
Qian Xiao ◽  
Wee Chyan Lee ◽  
Bing Cheng ◽  
...  

AbstractBRD4, a Bromodomain and Extraterminal (BET) protein family member, is a promising anti-cancer drug target. However, resistance to BET inhibitors targeting BRD4 is common in solid tumors. Here, we show that cancer-associated fibroblast (CAF)-activated stromal signaling, interleukin-6/8-JAK2, induces BRD4 phosphorylation at tyrosine 97/98 in colorectal cancer, resulting in BRD4 stabilization due to interaction with the deubiquitinase UCHL3. BRD4 phosphorylation at tyrosine 97/98 also displays increased binding to chromatin but reduced binding to BET inhibitors, resulting in resistance to BET inhibitors. We further show that BRD4 phosphorylation promotes interaction with STAT3 to induce chromatin remodeling through concurrent binding to enhancers and super-enhancers, supporting a tumor-promoting transcriptional program. Inhibition of IL6/IL8-JAK2 signaling abolishes BRD4 phosphorylation and sensitizes BET inhibitors in vitro and in vivo. Our study reveals a stromal mechanism for BRD4 activation and BET inhibitor resistance, which provides a rationale for developing strategies to treat CRC more effectively.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yafei Jiang ◽  
Gangyang Wang ◽  
Haoran Mu ◽  
Xiaojun Ma ◽  
Zhuoying Wang ◽  
...  

Osteosarcoma is the most common primary malignant bone tumor, and there are few ideal clinically available drugs. The bromodomain and extraterminal domain (BET) protein is an emerging target for aggressive cancer, but therapies targeting the BET in osteosarcoma have been unsuccessful in clinical trials to date, and further exploration of specific BET inhibitors is of great significance. In our study, we demonstrated that NHWD-870, a potent BET inhibitor in a phase I clinical trial, significantly inhibited tumor proliferation and promoted cell apoptosis by reversing the oncogenic signature in osteosarcoma. More importantly, we identified NHWD-870 impeded binding of BRD4 to the promoter of GP130 leading to diminished activation of JAK/STAT3 signaling pathway. Furthermore, GP130 knockdown significantly sensitizes the chemosensitivity in vitro. In OS cell-derived xenografts, NHWD-870 effectively inhibited the growth of osteosarcoma. Beyond that, NHWD-870 effectively inhibited the differentiation and maturation of precursor osteoclasts in vitro and attenuated osteoclast-mediated bone loss in vivo. Finally, we confirmed the efficacy of synthetic lethal effects of NHWD-870 and cisplatin in antagonizing osteosarcoma in a preclinical PDX model. Taken together, these findings demonstrate that NHWD-870, as an effective BET inhibitor, may be a potential candidate for osteosarcoma intervention linked to its STAT3 signaling inhibitory activity. In addition, NHWD-870 appears to be a promising therapeutic strategy for bone-associated tumors, as it interferes with the vicious cycle of tumor progression and bone destruction.


Sign in / Sign up

Export Citation Format

Share Document