minimal toxicity
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 19)

H-INDEX

24
(FIVE YEARS 3)

Author(s):  
Cyntia Silva Oliveira ◽  
Marcelo Der Torossian Torres ◽  
Cibele Nicolaski Pedron ◽  
Viviane Brito Andrade ◽  
Pedro Ismael Silva ◽  
...  

Cancers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 79
Author(s):  
Conor Hanna ◽  
Victoria L. Dunne ◽  
Steven M. Walker ◽  
Karl T. Butterworth ◽  
Nuala McCabe ◽  
...  

Radical radiotherapy, often in combination with hormone ablation, is a safe and effective treatment option for localised or locally-advanced prostate cancer. However, up to 30% of patients with locally advanced PCa will go on to develop biochemical failure, within 5 years, following initial radiotherapy. Improving radiotherapy response is clinically important since patients exhibiting biochemical failure develop castrate-resistant metastatic disease for which there is no curative therapy and median survival is 8–18 months. The aim of this research was to determine if loss of PTEN (highly prevalent in advanced prostate cancer) is a novel therapeutic target in the treatment of advanced prostate cancer. Previous work has demonstrated PTEN-deficient cells are sensitised to inhibitors of ATM, a key regulator in the response to DSBs. Here, we have shown the role of PTEN in cellular response to IR was both complex and context-dependent. Secondly, we have confirmed ATM inhibition in PTEN-depleted cell models, enhances ionising radiation-induced cell killing with minimal toxicity to normal prostate RWPE-1 cells. Furthermore, combined treatment significantly inhibited PTEN-deficient tumour growth compared to PTEN-expressing counterparts, with minimal toxicity observed. We have further shown PTEN loss is accompanied by increased endogenous levels of ROS and DNA damage. Taken together, these findings provide pre-clinical data for future clinical evaluation of ATM inhibitors as a neoadjuvant/adjuvant in combination with radiation therapy in prostate cancer patients harbouring PTEN mutations.


2D Materials ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 045002
Author(s):  
Pedro M Costa ◽  
Kuo-Ching Mei ◽  
Martin Kreuzer ◽  
Yueting Li ◽  
Hosny A Neveen ◽  
...  

2020 ◽  
Vol 20 (3) ◽  
Author(s):  
Bruna L Nascimento ◽  
Mateus F Delabeneta ◽  
Lana Rubia B Rosseto ◽  
Daniele S B Junges ◽  
Ana Paula Paris ◽  
...  

ABSTRACT Mycocins have demonstrated inhibition of fungi, bacteria, parasites and viruses, in addition to being studied as epidemiological markers and in the development of vaccines. They are defined as extracellular proteins or glycoproteins with different activities, the main mechanism of action being the inhibition of β-glucan synthesis in the cell wall of sensitive strains. Given the resistance problems created by several microorganisms to agents commonly used in clinical practice, the discovery of new substances with this purpose becomes essential. Mycocins have potential as anti-microbials because they show minimal toxicity and do not present resistance.


Author(s):  
Deep Bhowmik ◽  
Rajat Nandi ◽  
Diwakar Kumar

In this study we aimed at the receipt binding domain of S protein and ACE-2 receptor as a promising drug targets against SARS-CoV-2. Flavonoids with anti-viral properties were taken as ligand for molecular docking. Selected flavonoids showed extremely good pharmacokinetics properties with good absorption, solubility, metabolism, excretion,distribution, bioavailability and minimal toxicity. These identified lead flavonoids may act as potential compound for the development of effective drugs and may help in controlling the rapid spread of SARS-CoV-2 by potentially inhibiting the virus entry into the host cell.


Author(s):  
Deep Bhowmik ◽  
Rajat Nandi ◽  
Diwakar Kumar

In this study we aimed at the receipt binding domain of S protein and ACE-2 receptor as a promising drug targets against SARS-CoV-2. Flavonoids with anti-viral properties were taken as ligand for molecular docking. Selected flavonoids showed extremely good pharmacokinetics properties with good absorption, solubility, metabolism, excretion,distribution, bioavailability and minimal toxicity. These identified lead flavonoids may act as potential compound for the development of effective drugs and may help in controlling the rapid spread of SARS-CoV-2 by potentially inhibiting the virus entry into the host cell.


Sign in / Sign up

Export Citation Format

Share Document