vicinal diols
Recently Published Documents


TOTAL DOCUMENTS

361
(FIVE YEARS 48)

H-INDEX

35
(FIVE YEARS 4)

Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 283
Author(s):  
Debin Wan ◽  
Christophe Morisseau ◽  
Bruce D. Hammock ◽  
Jun Yang

Vicinal diols are important signaling metabolites of various inflammatory diseases, and some of them are potential biomarkers for some diseases. Utilizing the rapid reaction between diol and 6-bromo-3-pyridinylboronic acid (BPBA), a selective and sensitive approach was established to profile these vicinal diols using liquid chromatography-post column derivatization coupled with double precursor ion scan-mass spectrometry (LC-PCD-DPIS-MS). After derivatization, all BPBA-vicinal-diol esters gave a pair of characteristic isotope ions resulting from 79Br and 81Br. The unique isotope pattern generated two characteristic fragment ions of m/z 200 and 202. Compared to a traditional offline derivatization technique, the new LC-PCD-DPIS-MS method retained the capacity of LC separation. In addition, it is more sensitive and selective than a full scan MS method. As an application, an in vitro study of the metabolism of epoxy fatty acids by human soluble epoxide hydrolase was tested. These vicinal-diol metabolites of individual regioisomers from different types of polyunsaturated fatty acids were easily identified. The limit of detection (LOD) reached as low as 25 nM. The newly developed LC-PCD-DPIS-MS method shows significant advantages in improving the selectivity and therefore can be employed as a powerful tool for profiling vicinal-diol compounds from biological matrices.


Soft Matter ◽  
2022 ◽  
Author(s):  
Shintaro Nakagawa ◽  
Jun Xia ◽  
Naoko Yoshie

Transient cross-links such as hydrogen bonds (H-bonds) are a central concept for creating polymers with mechanical functionalities, including toughness and self-healing properties. While conventional strong H-bonding groups are based on...


Author(s):  
Xiaofang Gao ◽  
Jiani Lin ◽  
Li Zhang ◽  
Xinyao Lou ◽  
Guanghui Guo ◽  
...  
Keyword(s):  

Author(s):  
Rui Dong ◽  
Xiaoxiao Yang ◽  
Lili Gao ◽  
Chaofeng Zhang ◽  
Fan Ren ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Cindy B. McReynolds ◽  
Irene Cortes-Puch ◽  
Resmi Ravindran ◽  
Imran H. Khan ◽  
Bruce G. Hammock ◽  
...  

Polyunsaturated fatty acids are metabolized into regulatory lipids important for initiating inflammatory responses in the event of disease or injury and for signaling the resolution of inflammation and return to homeostasis. The epoxides of linoleic acid (leukotoxins) regulate skin barrier function, perivascular and alveolar permeability and have been associated with poor outcomes in burn patients and in sepsis. It was later reported that blocking metabolism of leukotoxins into the vicinal diols ameliorated the deleterious effects of leukotoxins, suggesting that the leukotoxin diols are contributing to the toxicity. During quantitative profiling of fatty acid chemical mediators (eicosanoids) in COVID-19 patients, we found increases in the regioisomeric leukotoxin diols in plasma samples of hospitalized patients suffering from severe pulmonary involvement. In rodents these leukotoxin diols cause dramatic vascular permeability and are associated with acute adult respiratory like symptoms. Thus, pathways involved in the biosynthesis and degradation of these regulatory lipids should be investigated in larger biomarker studies to determine their significance in COVID-19 disease. In addition, incorporating diols in plasma multi-omics of patients could illuminate the COVID-19 pathological signature along with other lipid mediators and blood chemistry.


2021 ◽  
Vol 118 (7) ◽  
pp. e2020575118
Author(s):  
Jamie K. Hu ◽  
Hee-Won Suh ◽  
Munibah Qureshi ◽  
Julia M. Lewis ◽  
Sharon Yaqoob ◽  
...  

Keratinocyte-derived carcinomas, including squamous cell carcinoma (SCC), comprise the most common malignancies. Surgical excision is the therapeutic standard but is not always clinically feasible, and currently available alternatives are limited to superficial tumors. To address the need for a nonsurgical treatment for nodular skin cancers like SCC, we developed a bioadhesive nanoparticle (BNP) drug delivery system composed of biodegradable polymer, poly(lactic acid)-hyperbranched polyglycerol (PLA-HPG), encapsulating camptothecin (CPT). Nanoparticles (NPs) of PLA-HPG are nonadhesive NPs (NNPs), which are stealthy in their native state, but we have previously shown that conversion of the vicinal diols of HPG to aldehydes conferred NPs the ability to form strong covalent bonds with amine-rich surfaces. Herein, we show that these BNPs have significantly enhanced binding to SCC tumor cell surfaces and matrix proteins, thereby significantly enhancing the therapeutic efficacy of intratumoral drug delivery. Tumor injection of BNP-CPT resulted in tumor retention of CPT at ∼50% at 10 d postinjection, while CPT was undetectable in NNP-CPT or free (intralipid) CPT-injected tumors at that time. BNP-CPT also significantly reduced tumor burden, with a portion (∼20%) of BNP-CPT–treated established tumors showing histologic cure. Larger, more fully established PDV SCC tumors treated with a combination of BNP-CPT and immunostimulating CpG oligodeoxynucleotides exhibited enhanced survival relative to controls, revealing the potential for BNP delivery to be used along with local tumor immunotherapy. Taken together, these results indicate that percutaneous delivery of a chemotherapeutic agent via BNPs, with or without adjuvant immunostimulation, represents a viable, nonsurgical alternative for treating cutaneous malignancy.


Sign in / Sign up

Export Citation Format

Share Document