tetramic acids
Recently Published Documents


TOTAL DOCUMENTS

180
(FIVE YEARS 20)

H-INDEX

28
(FIVE YEARS 3)

2022 ◽  
Vol 2 ◽  
Author(s):  
Carla Uranga ◽  
Karen E. Nelson ◽  
Anna Edlund ◽  
Jonathon L. Baker

The human oral microbiome consists of diverse microbes actively communicating and interacting through a variety of biochemical mechanisms. Dental caries is a major public health issue caused by fermentable carbohydrate consumption that leads to dysbiosis of the oral microbiome. Streptococcus mutans is a known major contributor to caries pathogenesis, due to its exceptional ability to form biofilms in the presence of sucrose, as well as to its acidophilic lifestyle. S. mutans can also kill competing bacteria, which are typically health associated, through the production of bacteriocins and other small molecules. A subset of S. mutans strains encode the muc biosynthetic gene cluster (BGC), which was recently shown to produce the tetramic acids, mutanocyclin and reutericyclins A, B, and C. Reutericyclin A displayed strong antimicrobial activity and mutanocyclin appeared to be anti-inflammatory; however the effect of these compounds, and the carriage of muc by S. mutans, on the ecology of the oral microbiota is not known, and was examined here using a previously developed in vitro biofilm model derived from human saliva. While reutericyclin significantly inhibited in vitro biofilm formation and acid production at sub-nanomolar concentrations, mutanocyclin did not present any activity until the high micromolar range. 16S rRNA gene sequencing revealed that reutericyclin drastically altered the biofilm community composition, while mutanocyclin showed a more specific effect, reducing the relative abundance of cariogenic Limosilactobacillus fermentum. Mutanocyclin or reutericyclin produced by the S. mutans strains amended to the community did not appear to affect the community in the same way as the purified compounds, although the results were somewhat confounded by the differing growth rates of the S. mutans strains. Regardless of the strain added, the addition of S. mutans to the in vitro community significantly increased the abundance of S. mutans and Veillonella infantium, only. Overall, this study illustrates that reutericyclin A and mutanocyclin do impact the ecology of a complex in vitro oral biofilm; however, further research is needed to determine the extent to which the production of these compounds affects the virulence of S. mutans.


2021 ◽  
Vol 7 (12) ◽  
pp. 1034
Author(s):  
Mary L. Shenouda ◽  
Maria Ambilika ◽  
Russell J. Cox

The trili biosynthetic gene cluster (BGC) from the well-studied organism Trichoderma reesei was studied by heterologous expression in the fungal host Aspergillus oryzae. Coexpression of triliA and triliB produces two new acyl tetramic acids. Addition of the ring-expanding cytochrome P450 encoded by triliC then yields a known pyridone intermediate to ilicicolin H and a new chain-truncated shunt metabolite. Finally, addition of the intramolecular Diels-Alderase encoded by triliD affords a mixture of 8-epi ilicicolin H and ilicicolin H itself, showing that the T. reesei trili BGC encodes biosynthesis of this potent antifungal agent. Unexpected A. oryzae shunt pathways are responsible for the production of the new compounds, emphasising the role of fungal hosts in catalysing diversification reactions.


Author(s):  
Yufu Unten ◽  
Masatoshi Murai ◽  
Katsuyuki Sakai ◽  
Yukihiro Asami ◽  
Takenori Yamamoto ◽  
...  

Abstract The mitochondrial machineries presiding over ATP synthesis via oxidative phosphorylation are promising druggable targets. Fusaramin, a 3-acyl tetramic acid isolated from Fusarium concentricum FKI-7550, is an inhibitor of oxidative phosphorylation in Saccharomyces cerevisiae mitochondria, although its target has yet to be identified. Fusaramin significantly interfered with [3H]ADP uptake by yeast mitochondria at the concentration range inhibiting oxidative phosphorylation. A photoreactive fusaramin derivative (pFS-5) specifically labeled voltage-dependent anion channel 1 (VDAC1), which facilitates trafficking of ADP/ATP across the outer mitochondrial membrane. These results strongly suggest that the inhibition of oxidative phosphorylation by fusaramin is predominantly attributable to the impairment of VDAC1 functions. Fusaramin also inhibited FoF1-ATP synthase and ubiquinol-cytochrome c oxidoreductase (complex III) at concentrations higher than those required for the VDAC inhibition. Considering that other tetramic acid derivatives are reported to inhibit FoF1-ATP synthase and complex III, natural tetramic acids were found to elicit multiple inhibitory actions against mitochondrial machineries.


2021 ◽  
Vol 9 (7) ◽  
pp. 1391
Author(s):  
Lachlan Dow

Quorum sensing (QS) describes a process by which bacteria can sense the local cell density of their own species, thus enabling them to coordinate gene expression and physiological processes on a community-wide scale. Small molecules called autoinducers or QS signals, which act as intraspecies signals, mediate quorum sensing. As our knowledge of QS has progressed, so too has our understanding of the structural diversity of QS signals, along with the diversity of bacteria conducting QS and the range of ecosystems in which QS takes place. It is now also clear that QS signals are more than just intraspecies signals. QS signals mediate interactions between species of prokaryotes, and between prokaryotes and eukaryotes. In recent years, our understanding of QS signals as mediators of algae–bacteria interactions has advanced such that we are beginning to develop a mechanistic understanding of their effects. This review will summarize the recent efforts to understand how different classes of QS signals contribute to the interactions between planktonic microalgae and bacteria in our oceans, primarily N-acyl-homoserine lactones, their degradation products of tetramic acids, and 2-alkyl-4-quinolones. In particular, this review will discuss the ways in which QS signals alter microalgae growth and metabolism, namely as direct effectors of photosynthesis, regulators of the cell cycle, and as modulators of other algicidal mechanisms. Furthermore, the contribution of QS signals to nutrient acquisition is discussed, and finally, how microalgae can modulate these small molecules to dampen their effects.


Author(s):  
Lachlan Dow

Quorum sensing (QS) describes a process by which bacteria can sense the local cell density of their own species, thus enabling them to coordinate gene expression and physiological processes on a community-wide scale. Small molecules called autoinducers or QS signals, which act as intraspecies signals, mediate quorum sensing. As our knowledge of QS has progressed, so too has our understanding of the structural diversity of QS signals, along with the diversity of bacteria conducting QS and the range of ecosystems in which QS takes place. It is now also clear that QS signals are more than just intraspecies signals. QS signals mediate interactions between species of prokaryotes, and between prokaryotes and eukaryotes. In recent years, our understanding of QS signals as mediators of algae–bacteria interactions has advanced such that we are beginning to develop a mechanistic understanding of their effects. This review will summarize the recent efforts to understand how different classes of QS signals contribute to the interactions between planktonic microalgae and bacteria in our oceans, primarily N-acyl-homoserine lactones, their degradation products tetramic acids, and 2-alkyl-4-quinolones. In particular, this review will discuss the ways in which QS signals alter microalgae growth and metabolism, namely as direct effectors of photosynthesis, regulators of the cell cycle, and as modulators of other algicidal mechanisms. Furthermore, the contribution of QS signals to nutrient acquisition is discussed, and finally how microalgae can modulate these small molecules to dampen their effects.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 783
Author(s):  
Gian Primahana ◽  
Abolfazl Narmani ◽  
Frank Surup ◽  
Rémy Bertrand Teponno ◽  
Mahdi Arzanlou ◽  
...  

Submerged mycelial cultures of the ascomycete Colpoma quercinum CCTU A372 were found to produce five previously undescribed tetramic acids, for which we propose the trivial names colposetins A–C (1–3) and colpomenoic acids A and B (4 and 5), along with the known compounds penicillide (6) and monodictyphenone (7). The planar structures of 1–5 were determined by high-resolution electrospray ionization mass spectrometry (HR-ESIMS) and extensive 1D and 2D nuclear magnetic resonance (NMR) spectroscopy. Their absolute configurations were determined by the combination of electronic circular dischroism (ECD) analysis, J-based configurational analysis, and a rotating-frame Overhauser effect spectroscopy (ROESY) experiment. Colposetin B displayed weak antimicrobial activity against Bacillus subtilis and Mucor hiemalis (MIC 67 µg/mL).


2021 ◽  
Author(s):  
Min Chen ◽  
Chunwen Geng ◽  
Ling Han ◽  
Yu Liu ◽  
Yongkai Yu ◽  
...  

In order to discover green herbicides with novel molecular scaffolds, the natural tetramic acids were used as the lead compounds to design and synthesize four pyrrolidine-2,4-dione derivatives incorporating a chainlike...


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5497
Author(s):  
Blondelle Matio Kemkuignou ◽  
Laura Treiber ◽  
Haoxuan Zeng ◽  
Hedda Schrey ◽  
Rainer Schobert ◽  
...  

In our ongoing search for new bioactive fungal metabolites, four previously undescribed oxazole carboxylic acid derivatives (1–4) for which we proposed the trivial names macrooxazoles A–D together with two known tetramic acids (5–6) were isolated from the plant pathogenic fungus Phoma macrostoma. Their structures were elucidated based on high-resolution mass spectrometry (HR-MS) and nuclear magnetic resonance (NMR) spectroscopy. The hitherto unclear structure of macrocidin Z (6) was also confirmed by its first total synthesis. The isolated compounds were evaluated for their antimicrobial activities against a panel of bacteria and fungi. Cytotoxic and anti-biofilm activities of the isolates are also reported herein. The new compound 3 exhibited weak-to-moderate antimicrobial activity as well as the known macrocidins 5 and 6. Only the mixture of compounds 2 and 4 (ratio 1:2) showed weak cytotoxic activity against the tested cancer cell lines with an IC50 of 23 µg/mL. Moreover, the new compounds 2 and 3, as well as the known compounds 5 and 6, interfered with the biofilm formation of Staphylococcus aureus, inhibiting 65%, 75%, 79%, and 76% of biofilm at 250 µg/mL, respectively. Compounds 5 and 6 also exhibited moderate activity against S. aureus preformed biofilm with the highest inhibition percentage of 75% and 73% at 250 µg/mL, respectively.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2147 ◽  
Author(s):  
Gaetano De Tommaso ◽  
Maria Michela Salvatore ◽  
Rosario Nicoletti ◽  
Marina DellaGreca ◽  
Francesco Vinale ◽  
...  

Harzianic acid is a secondary metabolite of Trichoderma, structurally belonging to the dienyltetramic acid subgroup of the tetramic acids. Biological activities of harzianic acid are of great interest for its antimicrobial and plant growth-promoting activities, which might be related to its chelating properties. In the present work harzianic acid, isolated from cultures of a strain of Trichoderma pleuroticola associated to the gastropod Melarhaphe neritoides, was studied as a complexant agent of a number of biologically relevant transition metals (i.e., Zn2+, Fe2+, Cu2+, and Mn2+), using UV-VIS, potentiometry, MS and NMR techniques. Our findings show the coordination capacity of harzianic acid toward the above cations through the formation of neutral or charged complexes in a variable ratio depending on the metal and pH conditions.


Sign in / Sign up

Export Citation Format

Share Document