catalytic residues
Recently Published Documents


TOTAL DOCUMENTS

253
(FIVE YEARS 29)

H-INDEX

41
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Ioannis G. Riziotis ◽  
Antonio J. M. Ribeiro ◽  
Neera Borkakoti ◽  
Janet Thornton

Conformational variation in catalytic residues can be captured as alternative snapshots in enzyme crystal structures. Addressing the question of whether active site flexibility is an intrinsic and essential property of enzymes for catalysis, we present a comprehensive study on the 3D variation of active sites of 925 enzyme families, using explicit catalytic residue annotations from the Mechanism and Catalytic Site Atlas and structural data from the Protein Data Bank. Through weighted pairwise superposition of the functional atoms of active sites, we captured structural variability at single-residue level and examined the geometrical changes as ligands bind or as mutations occur. We demonstrate that catalytic centres of enzymes can be inherently rigid or flexible to various degrees according to the function they perform, and structural variability most often involves a subset of the catalytic residues, usually those not directly involved in the formation or cleavage of bonds. Moreover, data suggest that 2/3 of active sites are flexible, and in half of those, flexibility is only observed in the side chain. The goal of this work is to characterise our current knowledge of the extent of flexibility at the heart of catalysis and ultimately place our findings in the context of the evolution of catalysis as enzymes evolve new functions and bind different substrates.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ebru Destan ◽  
Busra Yuksel ◽  
Bradley B. Tolar ◽  
Esra Ayan ◽  
Sam Deutsch ◽  
...  

AbstractThe ammonia-oxidizing thaumarchaeal 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB) cycle is one of the most energy-efficient CO2 fixation cycles discovered thus far. The protein encoded by Nmar_1308 (from Nitrosopumilus maritimus SCM1) is a promiscuous enzyme that catalyzes two essential reactions within the thaumarchaeal 3HP/4HB cycle, functioning as both a crotonyl-CoA hydratase (CCAH) and 3-hydroxypropionyl-CoA dehydratase (3HPD). In performing both hydratase and dehydratase activities, Nmar_1308 reduces the total number of enzymes necessary for CO2 fixation in Thaumarchaeota, reducing the overall cost for biosynthesis. Here, we present the first high-resolution crystal structure of this bifunctional enzyme with key catalytic residues in the thaumarchaeal 3HP/4HB pathway.


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1438
Author(s):  
Vladimir I. Timofeev ◽  
Dmitry E. Petrenko ◽  
Yulia K. Agapova ◽  
Anna V. Vlaskina ◽  
David M. Karlinsky ◽  
...  

A covalent serine protease inhibitor—Na-p-tosyl-lysyl chloromethylketone (TCK) is a modified lysine residue tosylated at the N-terminus and chloromethylated at the C-terminus, one molecule of which is capable of forming two covalent bonds with both Ser and His catalytic residues, was co-crystallized with modified oligopeptidase B (OpB) from Serratia proteomaculans (PSPmod). The kinetics study, which preceded crystallization, shows that the stoichiometry of TCK-dependent inhibition of PSPmod was 1:2 (protein:inhibitor). The crystal structure of the PSPmod-TCK complex, solved at a resolution of 2.3 Å, confirmed a new type of inhibitor binding. Two TCK molecules were bound to one enzyme molecule: one with the catalytic Ser, the other with the catalytic His. Due to this mode of binding, the intermediate state of PSPmod and the disturbed conformation of the catalytic triad were preserved in the PSPmod-TCK complex. Nevertheless, the analysis of the amino acid surroundings of the inhibitor molecule bound to the catalytic Ser and its comparison with that of antipain-bound OpB from Trypanosoma brucei provided an insight in the structure of the PSPmod substrate-binding pocket. Supposedly, the new type of binding is typical for the interaction of chloromethylketone derivatives with two-domain OpBs. In the open conformational state that these enzymes are assumed in solution, the disordered configuration of the catalytic triad prevents simultaneous interaction of one inhibitor molecule with two catalytic residues.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2404
Author(s):  
Li-Ting Ma ◽  
Pi-Ling Liu ◽  
Yang-Tui Cheng ◽  
Tz-Fan Shiu ◽  
Fang-Hua Chu

Taiwania cryptomerioides is a monotypic species, and its terpenoid-rich property has been reported in recent years. To uncover monoterpene biosynthesis in T. cryptomerioides, this study used transcriptome mining to identify candidates with tentative monoterpene synthase activity. Along with the phylogenetic analysis and in vitro assay, two geraniol synthases (TcTPS13 and TcTPS14), a linalool synthase (TcTPS15), and a β-pinene synthase (TcTPS16), were functionally characterized. Via the comparison of catalytic residues, the Cys/Ser at region 1 might be crucial in determining the formation of α-pinene or β-pinene. In addition, the Cupressaceae monoterpene synthases were phylogenetically clustered together; they are unique and different from those of published conifer species. In summary, this study aimed to uncover the ambiguous monoterpenoid network in T. cryptomerioide, which would expand the landscape of monoterpene biosynthesis in Cupressaceae species.


2021 ◽  
Author(s):  
Ebru Destan ◽  
Busra Yuksel ◽  
Bradley B. Tolar ◽  
Esra Ayan ◽  
Sam Deutsch ◽  
...  

The ammonia-oxidizing thaumarchaeal 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB) cycle is one of the most energy-efficient CO2 fixation cycles discovered thus far. The protein encoded by Nmar_1308 (from Nitrosopumilus maritimus SCM1) is a promiscuous enzyme that catalyzes two essential reactions within the thaumarchaeal 3HP/4HB cycle, functioning as both a crotonyl-CoA hydratase (CCAH) and 3-hydroxypropionyl-CoA dehydratase (3HPD). In performing both hydratase and dehydratase activities, Nmar_1308 reduces the total number of enzymes necessary for CO2 fixation in Thaumarchaeota, reducing the overall cost for biosynthesis. Here, we present the first high-resolution crystal structure of this bifunctional enzyme with key catalytic residues in the thaumarchaeal 3HP/4HB pathway.


2021 ◽  
Vol 1 ◽  
Author(s):  
Matylda Anna Izert ◽  
Patrycja Emanuela Szybowska ◽  
Maria Wiktoria Górna ◽  
Matthew Merski

Protein repeats are short, highly similar peptide motifs that occur several times within a single protein, for example the TPR and Ankyrin repeats. Understanding the role of mutation in these proteins is complicated by the competing facts that 1) the repeats are much more restricted to a set sequence than non-repeat proteins, so mutations should be harmful much more often because there are more residues that are heavily restricted due to the need of the sequence to repeat and 2) the symmetry of the repeats in allows the distribution of functional contributions over a number of residues so that sometimes no specific site is singularly responsible for function (unlike enzymatic active site catalytic residues). To address this issue, we review the effects of mutations in a number of natural repeat proteins from the tetratricopeptide and Ankyrin repeat families. We find that mutations are context dependent. Some mutations are indeed highly disruptive to the function of the protein repeats while mutations in identical positions in other repeats in the same protein have little to no effect on structure or function.


2021 ◽  
Author(s):  
Lee M Stunkard ◽  
Aaron B Benjamin ◽  
James Bower ◽  
Tyler Huth ◽  
Jeremy Lohman

Crystal structures of Streptomyces coelicolor methylmalonyl-CoA epimerase in the holo-form, with substrate or the putative transition state analog, 2-nitroproionyl-CoA. The proposed catalytic mechanism is general acid-base catalysis. The proposed catalytic residues are too far from the substrate or analog, unless conformational changes take place or some other mechanism is used. <br>


2021 ◽  
Author(s):  
Lee M Stunkard ◽  
Aaron B Benjamin ◽  
James Bower ◽  
Tyler Huth ◽  
Jeremy Lohman

Crystal structures of Streptomyces coelicolor methylmalonyl-CoA epimerase in the holo-form, with substrate or the putative transition state analog, 2-nitroproionyl-CoA. The proposed catalytic mechanism is general acid-base catalysis. The proposed catalytic residues are too far from the substrate or analog, unless conformational changes take place or some other mechanism is used. <br>


2021 ◽  
Author(s):  
Ruidan Shen ◽  
Rory Crean ◽  
Sean Johnson ◽  
Shina Caroline Lynn Kamerlin ◽  
Alvan C. Hengge

<p>Catalysis by protein tyrosine phosphatases (PTPs) relies on the motion of a flexible protein loop (the WPD-loop) that carries a residue acting as a general acid/base catalyst during the PTP-catalyzed reaction. The orthogonal substitutions of a non-catalytic residue in the WPD-loops of YopH and PTP1B results in shifted pH-rate profiles, from an altered kinetic p<i>K</i><sub>a</sub> of the nucleophilic cysteine. Compared to WT, the G352T YopH variant has a broadened pH-rate profile, similar activity at optimal pH, but significantly higher activity at low pH. Changes in the corresponding PTP1B T177G variant are more modest and in the opposite direction, with a narrowed pH profile and less activity in the most acidic range. Crystal structures of the variants show no structural perturbations, but suggest an increased preference for the WPD-loop closed conformation. Computational analysis confirms a shift in loop conformational equilibrium in favor of the closed conformation, arising from a combination of increased stability of the closed state and destabilization of the loop-open state. Simulations identify the origins of this population shift, revealing differences in the flexibility of the WPD-loop and neighboring regions. Our results demonstrate that changes to the pH dependency of catalysis by PTPs can result from small changes in amino acid composition in their WPD-loops affecting only loop dynamics and conformational equilibrium. The perturbation of kinetic p<i>K</i><sub>a</sub> values of catalytic residues by non-chemical processes affords a means for nature to alter an enzyme’s pH dependency by a less disruptive path than altering electrostatic networks around catalytic residues themselves. </p>


Sign in / Sign up

Export Citation Format

Share Document