steel joints
Recently Published Documents


TOTAL DOCUMENTS

977
(FIVE YEARS 292)

H-INDEX

42
(FIVE YEARS 7)

Ultrasonics ◽  
2022 ◽  
Vol 119 ◽  
pp. 106582
Author(s):  
João da Cruz Payão Filho ◽  
Vinicius Pereira Maia ◽  
Elisa Kimus Dias Passos ◽  
Rodrigo Stohler Gonzaga ◽  
Diego Russo Juliano

2021 ◽  
Vol 12 (23) ◽  
pp. 22-32
Author(s):  
Anton Kralj ◽  
◽  
Davor Skejić ◽  

Structural project is based on technical regulations, structural codes, construction conditions, and client requirements. Through the structural design process, some important decisions that can significantly affect the final result must be implemented. The most important factor for optimal design is the reduction in material and overall work costs. Selecting appropriate joint configurations that can reduce the overall weight and work on the structure is critical. To examine a significant number of possible configurations and their effect on structural behavior, the generative design method (GDM) is used. In this study, software is custom developed, and a relevant example of generative joint structural design is provided. The methodology for the optimal joint and structure design is described comprehensively. The final results show that the GDM is an effective methodology for application in the design of steel structures.


Author(s):  
Kornél Májlinger ◽  
Levente T. Katula ◽  
Balázs Varbai

The tensile strength of newly developed ultra-high strength steel grades is now above 1800 MPa, and even new steel grades are currently in development. One typical welding process to join thin steels sheets is resistance spot welding (RSW). Some standardized and not standardized formulas predict the minimal shear tension strength (STS) of RSWed joints, but those formulas are less and less accurate with the higher base materials strength. Therefore, in our current research, we investigated a significant amount of STS data of the professional literature and our own experiments and recommended a new formula to predict the STS of RSWed high strength steel joints. The proposed correlation gives a better prediction than the other formulas, not only in the ultra-high strength steel range but also in the lower steel strength domain.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7726
Author(s):  
Manuel Cabaleiro ◽  
Rafael Comesaña ◽  
Cristina González-Gaya ◽  
Carlos Caamaño

Among the most commonly used materials in the construction of structures in the last two centuries are iron and steel. Clamp joints are a suitable type of joint when it is necessary to rehabilitate or modify a historical steel structure for new uses, reinforcing or modifying it with new beams, without the need to drill or weld on the original structure. The clamps allow beams to be joined with a flange (such as I-beams) without the need for any prior operation on the beams and allow the manufacture of completely removable and reconfigurable structures. Developing and analysing this type of fully removable and reconfigurable structure is necessary. To date, no studies have been carried out on the fatigue behaviour of steel joints by clamps, especially taking into account their main geometric characteristics, such as the size of the clamp levers. In this work, an analytical model is proposed that allows for the analysis of the number of cycles and the fatigue limit of clamp joints as a function of the size of the clamp levers. In addition, various fatigue tests are performed with different clamp sizes. The experimental results are compared with those obtained with the proposed methodology. Finally, the relationships between the lever length and the fatigue behaviour of the clamp joints have been determined. It is concluded that an increase in the size of the front lever is associated to a decrease in the fatigue limit. On the contrary, if the size of the rear lever is increased, the fatigue limit of the joint increases. In general, according to the obtained results, the resistance of the joint can be reduced to approximately one third when it is subjected to fatigue loads.


MRS Advances ◽  
2021 ◽  
Author(s):  
Ángel del Jesús León-Gerónimo ◽  
Quetzalmaflor Miranda-Hernández ◽  
Jorge A. Verduzco-Martínez ◽  
José Lemus-Ruiz

2021 ◽  
Author(s):  
Moritz Braun ◽  
Jonas Hensel ◽  
Shi Song ◽  
Sören Ehlers

While some post-weld treatment techniques increase the fatigue life mainly due to induced compressive residual stress others are trying to create a smooth transition at weld toes. One of the latter is weld profiling. This study investigates the effect of weld profiling for four different steel types from S355 to S900 including one duplex stainless-steel and performs a comparison with high frequency mechanical impact treatment. The observed fatigue strength improvement is significantly higher than typically assumed for such techniques and comparable to increases observed for HFMI treatment. The fatigue strength further increases with parent material strength and is only slightly below the estimated fatigue strength of the parent material. Finally, fatigue design curves are proposed for weld profiling that include an increasing fatigue strength improvement for higher strength materials, but that are still conservative for low weld quality.


Sign in / Sign up

Export Citation Format

Share Document