spatial trajectories
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 37)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 922 (2) ◽  
pp. 226
Author(s):  
Llŷr Dafydd Humphries ◽  
Huw Morgan

Abstract Small-scale brightenings in solar atmospheric observations are a manifestation of heating and/or energy transport events. We present statistical characteristics of brightenings from a new detection method applied to 1330, 1400, and 2796 Å IRIS slit-jaw image time series. A total of 2377 events were recorded that coexist in all three channels, giving high confidence that they are real. Of these, ≈1800 were spatially coherent, equating to event densities of ∼9.7 × 10−5 arcsec−2 s−1 within a 90″ × 100″ FOV over 34.5 minutes. Power-law indices estimates are determined for total brightness (2.78 < α < 3.71), maximum brightness (3.84 < α < 4.70), and average area (4.31 < α < 5.70) distributions. Duration and speed distributions do not obey a power law. A correlation is found between the events’ spatial fragmentation, area, and duration, and a weak relationship with total brightness, showing that larger/longer-lasting events are more likely to fragment during their lifetime. Speed distributions show that all events are in motion, with an average speed of ∼7 km s−1. The events’ spatial trajectories suggest that cooler 2796 Å events tend to appear slightly later and occupy a different position/trajectory than the hotter channel results. This suggests that either many of these are impulsive events caused by reconnection, with subsequent rapid cooling, or that the triggering event occurs near the TR, with a subsequent propagating disturbance to cooler atmospheric layers. The spatial distribution of events is not uniform, with broad regions devoid of events. A comparison of spatial distribution with properties of other atmospheric layers shows a tentative connection between high magnetic field strength, the corona’s multi-thermality, and high IRIS brightening activity.


2021 ◽  
Vol 2096 (1) ◽  
pp. 012110
Author(s):  
V F Filaretov ◽  
A S Gubankov ◽  
I V Gornostaev

Abstract The paper is devoted to preservation of dynamic control accuracy of working tools of multilink manipulators when they move along arbitrary spatial trajectories, taking into account the design limits in all degrees of freedom and special cases of position of their links. Preservation of control accuracy is proposed to be ensured by eliminating reach of all degrees of freedom of the manipulators to the limits and to indicated special positions, characterized by ambiguity in solving the inverse kinematic problems of the manipulators, as well as excluding the reach of their working tools to boundaries of working area due to use of a redundant degree of freedom when approaching indicated undesirable positions. The performed simulation has confirmed efficiency of the proposed method.


2021 ◽  
Author(s):  
Aaron D Milstein ◽  
Sarah Tran ◽  
Grace Ng ◽  
Ivan Soltesz

During spatial exploration, neural circuits in the hippocampus store memories of sequences of sensory events encountered in the environment. When sensory information is absent during "offline" resting periods, brief neuronal population bursts can "replay" sequences of activity that resemble bouts of sensory experience. These sequences can occur in either forward or reverse order, and can even include spatial trajectories that have not been experienced, but are consistent with the topology of the environment. The neural circuit mechanisms underlying this variable and flexible sequence generation are unknown. Here we demonstrate in a recurrent spiking network model of hippocampal area CA3 that experimental constraints on network dynamics such as spike rate adaptation, population sparsity, stimulus selectivity, and rhythmicity enable additional emergent properties, including variable offline memory replay. In an online stimulus-driven state, we observed the emergence of neuronal sequences that swept from representations of past to future stimuli on the timescale of the theta rhythm. In an offline state driven only by noise, the network generated both forward and reverse neuronal sequences, and recapitulated the experimental observation that offline memory replay events tend to include salient locations like the site of a reward. These results demonstrate that biological constraints on the dynamics of recurrent neural circuits are sufficient to enable memories of sensory events stored in the strengths of synaptic connections to be flexibly read out during rest and sleep, which is thought to be important for memory consolidation and planning of future behavior.


Author(s):  
Valentin Voskresenski

The article examines monumental memorialization of political violence in the period of communism in Bulgaria. The text reviews contemporary research presenting the topic of transitional justice, formation of victim’s identities and as part of post-communist cultural memory. A research is made of three theoretical approaches to understanding monumental memorialization – through traumatization, contestation or dangerization of memory and the social functions and meanings stemming from them. The analytical part represents a case study from Bulgaria, using ample empirical material – interviews, archive materials and other sources, part of a larger research by the author. Comparative analysis is used for description of national idiosyncrasies which is used as a basis to present their variants, temporal and spatial aspects. Social functions, political uses, interpretations, their use for reconstruction of national past and formation of national identity. A separate part of the text examines the initiators of these memorial signs – social actors, nongovernmental organizations and political parties, on which the degree of institutionalization and politization of this memory depends, as well as their use for far right radicalization. The text tracks the change of memorial landscapes and the major spatial trajectories (logics) of this post-communist topography of terror, as well as the symbolism embodied in it, combining political, traditional and religious meanings.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Eric L Denovellis ◽  
Anna K Gillespie ◽  
Michael E Coulter ◽  
Marielena Sosa ◽  
Jason E Chung ◽  
...  

Representations related to past experiences play a critical role in memory and decision-making processes. The rat hippocampus expresses these types of representations during sharp-wave ripple (SWR) events, and previous work identified a minority of SWRs that contain ‘replay’ of spatial trajectories at ∼20x the movement speed of the animal. Efforts to understand replay typically make multiple assumptions about which events to examine and what sorts of representations constitute replay. We therefore lack a clear understanding of both the prevalence and the range of representational dynamics associated with replay. Here, we develop a state space model that uses a combination of movement dynamics of different speeds to capture the spatial content and time evolution of replay during SWRs. Using this model, we find that the large majority of replay events contain spatially coherent, interpretable content. Furthermore, many events progress at real-world, rather than accelerated, movement speeds, consistent with actual experiences.


2021 ◽  
Author(s):  
Bo Tang ◽  
Man Lung Yiu ◽  
Kyriakos Mouratidis ◽  
Jiahao Zhang ◽  
Kai Wang

2021 ◽  
Author(s):  
Emma L Krause ◽  
Jan Drugowitsch

During periods of rest, hippocampal place cells feature bursts of activity called sharp-wave ripples (SWRs). Heuristic approaches to their analysis have revealed that a small fraction of SWRs appear to "simulate" trajectories through the environment - called awake hippocampal replay - while the functional role of a majority of these SWRs remains unclear. Applying a novel probabilistic approach to characterize the spatio-temporal dynamics embedded in SWRs, we instead show that almost all SWRs of foraging rodents simulate such trajectories through the environment. Furthermore, these trajectories feature momentum, that is, inertia in their velocities, that mirrors the animals' natural movement. This stands in contrast to replay events during sleep which seem to follow Brownian motion without such momentum. Lastly, interpreting the replay trajectories in the context of navigational planning revealed that similar past analyses were biased by the heuristic SWR sub-selection. Overall, our approach provides a more complete characterization of the spatio-temporal dynamics within SWRs, highlights qualitative differences between sleep and awake replay, and ought to support future, more detailed, and less biased analysis of the role of awake replay in navigational planning.


2021 ◽  
Vol 11 (10) ◽  
pp. 4330
Author(s):  
Andrea Lucchese ◽  
Salvatore Digiesi ◽  
Kübra Akbaş ◽  
Carlotta Mummolo

The ability of an agent to accomplish a trajectory during a certain motor task depends on the fit between external (environment) and internal (agent) constraints, also known as affordance. A model of difficulty for a generalized reaching motor task is proposed as an affordance-related measure, as perceived by a specific agent for a given environment and task. By extending the information-based Index of Difficulty of a trajectory, a stochastic model of difficulty is formulated based on the observed variability of spatial trajectories executed by a given agent during a repetitive motor task. The model is tested on an experimental walking dataset available in the literature, where the repetitive stride movement of differently aged subjects (14 “old” subjects aged 50–73; 20 “young” subjects aged 21–37) at multiple speed conditions (comfortable, ~30% faster, ~30% slower) is analyzed. Reduced trajectory variability in older as compared to younger adults results in a higher Index of Difficulty (slower: +24%, p < 0.0125; faster: +38%, p < 0.002) which is interpreted in this context as reduced affordance. The model overcomes the limits of existing difficulty measures by capturing the stochastic dependency of task difficulty on a subject’s age and average speed. This model provides a benchmarking tool for motor performance in biomechanics and ergonomics applications.


Sign in / Sign up

Export Citation Format

Share Document