aedes triseriatus
Recently Published Documents


TOTAL DOCUMENTS

187
(FIVE YEARS 12)

H-INDEX

29
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elijah O. Juma ◽  
Brian F. Allan ◽  
Chang-Hyun Kim ◽  
Christopher Stone ◽  
Christopher Dunlap ◽  
...  

AbstractMosquito bacterial communities are essential in mosquito biology, and knowing the factors shaping these bacterial communities is critical to their application in mosquito-borne disease control. This study investigated how the larval environment influences the bacterial communities of larval stages of two container-dwelling mosquito species, Aedes triseriatus, and Aedes japonicus. Larval and water samples were collected from tree holes and used tires at two study sites, and their bacteria characterized through MiSeq sequencing of the 16S rRNA gene. Bacterial richness was highest in Ae. japonicus, intermediate in Ae. triseriatus, and lowest in water samples. Dysgonomonas was the dominant bacterial taxa in Ae. triseriatus larvae; the unclassified Comamonadaceae was dominant in water samples from waste tires, while Mycobacterium and Carnobacterium, dominated Ae. japonicus. The two mosquito species harbored distinct bacterial communities that were different from those of the water samples. The bacterial communities also clustered by habitat type (used tires vs. tree holes) and study site. These findings demonstrate that host species, and the larval sampling environment are important determinants of a significant component of bacterial community composition and diversity in mosquito larvae and that the mosquito body may select for microbes that are generally rare in the larval environment.


Author(s):  
Cody W Koloski ◽  
Ivan Drahun ◽  
Bryan J Cassone

Abstract Native to the Eastern United States and Eastern Canada, Aedes triseriatus (eastern tree hole mosquito) is an important vector of La Crosse virus and dog heartworm. Although its range has been well characterized in the United States, few studies have surveyed its distribution within Canada. In this study, mosquitoes were collected from a variety of urban and rural communities throughout Manitoba, Canada between the years of 2018 and 2020. Aedes triseriatus was identified and confirmed molecularly to be present in 13 communities. This includes localities that expand the species known distribution to new northern and western areas, and suggests that past surveillance efforts have not been comprehensive or environmental factors have caused this mosquito species to be present in areas in which it was not found previously. As Canada is showing signs of a changing climate, this may be driving the broader occurrence of Ae. triseriatus.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Emma Stump ◽  
Lauren M. Childs ◽  
Melody Walker

Abstract Background Mosquitoes are vectors for diseases such as dengue, malaria and La Crosse virus that significantly impact the human population. When multiple mosquito species are present, the competition between species may alter population dynamics as well as disease spread. Two mosquito species, Aedes albopictus and Aedes triseriatus, both inhabit areas where La Crosse virus is found. Infection of Aedes albopictus by the parasite Ascogregarina taiwanensis and Aedes triseriatus by the parasite Ascogregarina barretti can decrease a mosquito’s fitness, respectively. In particular, the decrease in fitness of Aedes albopictus occurs through the impact of Ascogregarina taiwanensis on female fecundity, larval development rate, and larval mortality and may impact its initial competitive advantage over Aedes triseriatus during invasion. Methods We examine the effects of parasitism of gregarine parasites on Aedes albopictus and triseriatus population dynamics and competition with a focus on when Aedes albopictus is new to an area. We build a compartmental model including competition between Aedes albopictus and triseriatus while under parasitism of the gregarine parasites. Using parameters based on the literature, we simulate the dynamics and analyze the equilibrium population proportion of the two species. We consider the presence of both parasites and potential dilution effects. Results We show that increased levels of parasitism in Aedes albopictus will decrease the initial competitive advantage of the species over Aedes triseriatus and increase the survivorship of Aedes triseriatus. We find Aedes albopictus is better able to invade when there is more extreme parasitism of Aedes triseriatus. Furthermore, although the transient dynamics differ, dilution of the parasite density through uptake by both species does not alter the equilibrium population sizes of either species. Conclusions Mosquito population dynamics are affected by many factors, such as abiotic factors (e.g. temperature and humidity) and competition between mosquito species. This is especially true when multiple mosquito species are vying to live in the same area. Knowledge of how population dynamics are affected by gregarine parasites among competing species can inform future mosquito control efforts and help prevent the spread of vector-borne disease.


2021 ◽  
Author(s):  
Emma Stump ◽  
Lauren M Childs ◽  
Melody Walker

Abstract Background: Mosquitoes are vectors for diseases that significantly impact the human population such as dengue, malaria and La Crosse virus. When multiple mosquito species are present, the competition between species may alter population dynamics as well as disease spread. Two mosquito species, Aedes albopictus and Aedes triseriatus, both inhabit areas where La Crosse virus is found. Infection of Aedes albopictus by the parasite Ascogregarina taiwanensis and Aedes triseriatus by the parasite Ascogregarina barretti can decrease a mosquito’s fitness, respectively. In particular, the decrease in fitness of Aedes albopictus occurs through the impact of Ascogregarina taiwanensis on female fecundity, larval development rate, and larval mortality and may impact its initial competitive advantage over Aedes triseriatus during invasion.Methods: We examine the effects of parasitism of gregarine parasites on Aedes albopictus and triseriatus population dynamics and competition with a focus on when Aedes albopictus is new to an area. We build a compartmental model including competition between Aedes albopictus and triseriatus while under parasitism of the gregarine parasites. Using parameters based on literature, we simulate the dynamics and analyze the equilibrium population proportion of the two species. We consider the presence of both parasites and potential dilution effects.Results: We show that increased levels of parasitism in Aedes albopictus will decrease the initial competitive advantage of the species over Aedes triseriatus and increase the survivorship of Aedes triseriatus. We find Aedes albopictus is better able to invade when there is more extreme parasitism of Aedes triseriatus. Furthermore, although the transient dynamics differ, dilution of the parasite density through uptake by both species does not alter the equilibrium population sizes of either species.Conclusions: Mosquito population dynamics are affected by many factors, such as abiotic factors (e.g. temperature and humidity) and competition between mosquito species. This is especially true when multiple mosquito species are vying to live in the same area. Knowledge of how population dynamics are affected by gregarine parasites among competing species can inform future mosquito control efforts and help prevent the spread of vector-borne disease.


2020 ◽  
Author(s):  
Emma Stump ◽  
Lauren M Childs ◽  
Melody Walker

Abstract Background: Mosquitoes are vectors for diseases that significantly impact the human population such as dengue, malaria and La Crosse virus. When multiple mosquito species are present, the competition between species may alter population dynamics as well as disease spread. Two mosquito species, Aedes albopictus and Aedes triseriatus, both inhabit areas where La Crosse virus is found. Infection of Aedes albopictus by the parasite Ascogregarina taiwanensis and Aedes triseriatus by the parasite Ascogregarina barretti can decrease a mosquito’s fitness, respectively. In particular, the decrease in fitness of Aedes albopictus occurs through the impact of Ascogregarina taiwanensis on female fecundity, larval development rate, and larval mortality and may impact its initial competitive advantage over Aedes triseriatus during invasion.Methods: We examine the effects of parasitism of gregarine parasites on Aedes albopictus and triseriatus population dynamics and competition with a focus on when Aedes albopictus is new to an area. We build a compartmental model including competition between Aedes albopictus and triseriatus while under parasitism of the gregarine parasites. Using parameters based on literature, we simulate the dynamics and analyze the equilibrium population proportion of the two species. We consider the presence of both parasites and potential dilution effects.Results: We show that increased levels of parasitism in Aedes albopictus will decrease the initial competitive advantage of the species over Aedes triseriatus and increase the survivorship of Aedes triseriatus. We find Aedes albopictus is better able to invade when there is more extreme parasitism of Aedes triseriatus. Furthermore, although the transient dynamics differ, dilution of the parasite density through uptake by both species does not alter the equilibrium population sizes of either species.Conclusions: Mosquito population dynamics are affected by many factors, such as abiotic factors (e.g. temperature and humidity) and competition between mosquito species. This is especially true when multiple mosquito species are vying to live in the same area. Knowledge of how population dynamics are affected by gregarine parasites among competing species can inform future mosquito control efforts and help prevent the spread of vector-borne disease.


2020 ◽  
Author(s):  
Emma Stump ◽  
Lauren M Childs ◽  
Melody Walker

Abstract Background: Mosquitoes are carriers for many diseases that significantly impact the human population such as dengue, malaria and La Crosse virus. When multiple mosquito species are present, the competition between species may alter disease spread. Two mosquito species, Aedes albopictus and Aedes triseriatus, both inhabit areas where La Crosse Encephalitis Virus is found. Infection of Aedes albopictus by the parasite Ascogregarina taiwanensis can decrease the mosquito’s fitness and impact its initial competitive advantage over Aedes triseriatus. The decrease in fitness occurs through the impact of Ascogregarina taiwanensis on female fecundity, larval development rate, and larval mortality. Methods: In this paper, we examine the effects of parasitism of Ascogregarina taiwanensis on Aedes albopictus and Aedes triseriatus population dynamics and competition. We build a compartmental model using parameters based on published literature, simulate the dynamics of the system, and analyze the effect of parasitism on competition between the mosquito species. Results: We show that increased levels of parasitism in Aedes albopictus will decrease the initial competitive advantage of the species over Aedes triseriatus and increase the survivorship of Aedes triseriatus. An understanding of how population dynamics are affected by this parasite can inform future mosquito control and mosquito-borne disease mitigation efforts. Conclusions: Mosquito population dynamics are affected by many factors, including abiotic factors (e.g. temperature and humidity) and competition between mosquito species. This is especially true when multiple mosquito species are vying to live in the same area. An understanding of mosquito population dynamics is vital to preventing spread of these diseases.


2020 ◽  
Vol 9 (17) ◽  
Author(s):  
Shicheng Chen ◽  
Edward D. Walker

The bacterium Serratia fonticola strain S14, isolated from the midgut of a female Aedes triseriatus mosquito, has a genome size of 6,176,978 bp. The genome includes genes responsible for acyl-homoserine lactone-mediated quorum sensing, enterobactin, and aerobactin.


ENTOMON ◽  
2019 ◽  
Vol 44 (2) ◽  
pp. 117-126
Author(s):  
Rhitayu Chakraborti ◽  
Probir Kumar Bandyopadhyay

Study to assess the larvicidal property of Lantana camara leaves against Aedes triseriatus larvae found that the ethyl acetate extract had profound larvicidal action with the crude extract having a LC50 value of 409.831ppm. GC-MS analysis of the ethyl acetate extract confirmed the presence of twenty-one compounds out of which beta-caryophyllene covered the highest percentage of the chromatogram area. Further tests with beta-caryophyllene against the mosquito larvae proved it to be the active ingredient of L. Camara with a LC50 value of 104.243ppm.


Sign in / Sign up

Export Citation Format

Share Document