gtp binding proteins
Recently Published Documents


TOTAL DOCUMENTS

856
(FIVE YEARS 9)

H-INDEX

81
(FIVE YEARS 1)

2021 ◽  
Vol 134 (24) ◽  
Author(s):  
Anita Baillet ◽  
Michael A. McMurray ◽  
Patrick W. Oakes

ABSTRACT Septins are GTP-binding proteins that assemble into hetero-oligomers. They can interact with each other end-to-end to form filaments, making them the fourth element of the cytoskeleton. To update the current knowledge on the ever-increasing implications of these fascinating proteins in cellular functions, a hundred expert scientists from across the globe gathered from 12 to 15 October 2021 in Berlin for the first hybrid-format (on site and virtual) EMBO workshop Molecular and Cell Biology of Septins.


2020 ◽  
Author(s):  
Birsen Cevher-Keskin

The functional organization of eukaryotic cells requires the exchange of proteins, lipids, and polysaccharides between membrane compartments through transport intermediates. Small GTPases largely control membrane traffic, which is essential for the survival of all eukaryotes. Transport from one compartment of this pathway to another is mediated by vesicular carriers, which are formed by the controlled assembly of coat protein complexes (COPs) on donor organelles. The activation of small GTPases is essential for vesicle formation from a donor membrane. In eukaryotic cells, small GTP-binding proteins comprise the largest family of signaling proteins. The ADP-ribosylation factor 1 (ARF1) and secretion-associated RAS superfamily 1 (SAR1) GTP-binding proteins are involved in the formation and budding of vesicles throughout plant endomembrane systems. ARF1 has been shown to play a critical role in coat protein complex I (COPI)-mediated retrograde trafficking in eukaryotic systems, whereas SAR1 GTPases are involved in intracellular coat protein complex II (COPII)-mediated protein trafficking from the endoplasmic reticulum (ER) to the Golgi apparatus. The dysfunction of the endomembrane system can affect signal transduction, plant development, and defense. This chapter offers a summary of membrane trafficking system with an emphasis on the role of GTPases especially ARF1, SAR1, and RAB, their regulatory proteins, and interaction with endomembrane compartments. The vacuolar and endocytic trafficking are presented to enhance our understanding of plant development and immunity in plants.


2020 ◽  
Author(s):  
Benjamin L. Woods ◽  
Kevin S. Cannon ◽  
Amy S. Gladfelter

AbstractThe curvature of the membrane defines cell shape. Septins are GTP-binding proteins that assemble into heteromeric complexes and polymerize into filaments at areas of micron-scale membrane curvature. An amphipathic helix (AH) domain within the septin complex is necessary and sufficient for septins to preferentially assemble onto micron-scale curvature. Here we report that the non-essential fungal septin, Shs1, also has an AH domain capable of recognizing membrane curvature. In mutants lacking a fully functional Cdc12 AH domain, the Shs1 AH domain becomes essential. Moreover, we find that the Cdc12 AH domain is also important for septin bundling, suggesting multiple functions for septin AH domains.


2020 ◽  
Vol 71 (1) ◽  
pp. 247-272
Author(s):  
Erik Nielsen

Small GTP-binding proteins represent a highly conserved signaling module in eukaryotes that regulates diverse cellular processes such as signal transduction, cytoskeletal organization and cell polarity, cell proliferation and differentiation, intracellular membrane trafficking and transport vesicle formation, and nucleocytoplasmic transport. These proteins function as molecular switches that cycle between active and inactive states, and this cycle is linked to GTP binding and hydrolysis. In this review, the roles of the plant complement of small GTP-binding proteins in these cellular processes are described, as well as accessory proteins that control their activity, and current understanding of the functions of individual members of these families in plants—with a focus on the model organism Arabidopsis—is presented. Some potential novel roles of these GTPases in plants, relative to their established roles in yeast and/or animal systems, are also discussed.


2019 ◽  
Vol 78 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Abdul Razaque Memon ◽  
Christiane Katja Schwager ◽  
Karsten Niehaus

Abstract In this study we used Medicago truncatula, to identify and analyze the expression of small GTP-binding proteins (Arf1, Arl1, Sar1, Rabs, Rop/Rac) and their interacting partners in the infection process in the roots and nodules. A real-time polymerase chain reaction analysis was carried out and our results showed that Arf1 (AtArfB1c-like), MtSar1, AtRabA1e-like, AtRabC1-like, MsRab11-like and AtRop7-like genes were highly expressed in the nodules of rhizobium inoculated plants compared to the non-inoculated ones. On the contrary, AtRabA3 like, AtRab5c and MsRac1-like genes were highly expressed in non-infected nitrogen supplied roots of M. truncatula. Other Rab genes (AtRabA4a, AtRabA4c and AtRabG3a-like genes) were nearly equally expressed in both treatments. Interestingly, RbohB (a respiratory burst NADPH oxidase homologue) was more highly expressed in rhizobium infected than in non-infected roots and nodules. Our data show a differential expression pattern of small GTP-binding proteins in roots and nodules of the plants. This study demonstrates an important role of small GTP-binding proteins in symbiosome biogenesis and root nodule development in legumes.


Sign in / Sign up

Export Citation Format

Share Document