multipath effect
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 27)

H-INDEX

8
(FIVE YEARS 3)

GPS Solutions ◽  
2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Jacek Paziewski

AbstractWe analyze the observation quality, assess the performance and identify the constraints of quadruple-constellation single-frequency ionospheric-free precise point positioning (SF-IF PPP) with low-cost receivers. It is revealed that low-cost receivers with patch antennas exhibit lower C/N0 records and a weaker elevation dependence of C/N0 than the high-grade equipment. The results demonstrate that low-cost receivers can offer code measurements with similar noise compared to high-grade receivers providing that the multipath effect is eliminated. Regarding positioning performance, it is shown how SF-IF PPP for the high-grade receiver converges approximately two times faster than for the low-cost receiver with a patch antenna. It is confirmed that an application of a survey-grade antenna instead of the patch one noticeably enhances the performance of low-cost receiver SF-IF PPP. The study also reveals that the multipath effect is a dominant factor that constrains the performance of SF-IF PPP with low-cost receivers.


2021 ◽  
Vol 13 (13) ◽  
pp. 2442
Author(s):  
Jichao Lv ◽  
Rui Zhang ◽  
Jinsheng Tu ◽  
Mingjie Liao ◽  
Jiatai Pang ◽  
...  

There are two problems with using global navigation satellite system-interferometric reflectometry (GNSS-IR) to retrieve the soil moisture content (SMC) from single-satellite data: the difference between the reflection regions, and the difficulty in circumventing the impact of seasonal vegetation growth on reflected microwave signals. This study presents a multivariate adaptive regression spline (MARS) SMC retrieval model based on integrated multi-satellite data on the impact of the vegetation moisture content (VMC). The normalized microwave reflection index (NMRI) calculated with the multipath effect is mapped to the normalized difference vegetation index (NDVI) to estimate and eliminate the impact of VMC. A MARS model for retrieving the SMC from multi-satellite data is established based on the phase shift. To examine its reliability, the MARS model was compared with a multiple linear regression (MLR) model, a backpropagation neural network (BPNN) model, and a support vector regression (SVR) model in terms of the retrieval accuracy with time-series observation data collected at a typical station. The MARS model proposed in this study effectively retrieved the SMC, with a correlation coefficient (R2) of 0.916 and a root-mean-square error (RMSE) of 0.021 cm3/cm3. The elimination of the vegetation impact led to 3.7%, 13.9%, 11.7%, and 16.6% increases in R2 and 31.3%, 79.7%, 49.0%, and 90.5% decreases in the RMSE for the SMC retrieved by the MLR, BPNN, SVR, and MARS model, respectively. The results demonstrated the feasibility of correcting the vegetation changes based on the multipath effect and the reliability of the MARS model in retrieving the SMC.


2021 ◽  
Author(s):  
Lubna Farhi

Vehicle position estimation for wireless network has been studied in many fields since it has the ability to provide a variety of services, such as detecting oncoming collisions and providing warning signals to alert the driver. The services provided are often based on collaboration among vehicles that are equipped with relatively simple motion sensors and GPS units. Awareness of its precise position is vital to every vehicle, so that it can provide accurate data to its peers. Currently, typical positioning techniques integrate GPS receiver data and measurements of the vehicles motion. However, when the vehicle passes through an environment that creates multipath effect, these techniques fail to produce high position accuracy that they attain in open environments. Unfortunately, vehicles often travel in environments that cause multipath effect, such as areas with high buildings, trees, or tunnels. The goal of this research is to minimize the multipath effect with respect to the position accuracy of vehicles. The proposed technique first detects whether there is disturbance in the vehicle position estimate that is caused by the multipath effect using hypothesis test. This technique integrates all information with the vehicle's own data and the Constrained Weighted Least Squares (CWLS) optimization approach with time difference of arrival (TDOA) technique and minimizes the position estimate error of the vehicle. Kalman filter is used for smoothing range data and mitigating the NLOS errors. The positioning problem is formulated in a state-space framework and the constraints on system states are considered explicitly. The proposed recursive positioning algorithm will be comparatively more robust to measurement errors because it updates the technique that feeds the position corrections back to the Kalman Filter as compared with a Kalman tracking algorithm that estimates the target track directly from the TDOA measurements. It compensates the GPS data and decreases random error influence to the position precision. The new techniques presented in this thesis decrease the error in the position estimate. Simulation results show that the proposed tracking algorithm can improve the accuracy significantly.


2021 ◽  
Author(s):  
Lubna Farhi

Vehicle position estimation for wireless network has been studied in many fields since it has the ability to provide a variety of services, such as detecting oncoming collisions and providing warning signals to alert the driver. The services provided are often based on collaboration among vehicles that are equipped with relatively simple motion sensors and GPS units. Awareness of its precise position is vital to every vehicle, so that it can provide accurate data to its peers. Currently, typical positioning techniques integrate GPS receiver data and measurements of the vehicles motion. However, when the vehicle passes through an environment that creates multipath effect, these techniques fail to produce high position accuracy that they attain in open environments. Unfortunately, vehicles often travel in environments that cause multipath effect, such as areas with high buildings, trees, or tunnels. The goal of this research is to minimize the multipath effect with respect to the position accuracy of vehicles. The proposed technique first detects whether there is disturbance in the vehicle position estimate that is caused by the multipath effect using hypothesis test. This technique integrates all information with the vehicle's own data and the Constrained Weighted Least Squares (CWLS) optimization approach with time difference of arrival (TDOA) technique and minimizes the position estimate error of the vehicle. Kalman filter is used for smoothing range data and mitigating the NLOS errors. The positioning problem is formulated in a state-space framework and the constraints on system states are considered explicitly. The proposed recursive positioning algorithm will be comparatively more robust to measurement errors because it updates the technique that feeds the position corrections back to the Kalman Filter as compared with a Kalman tracking algorithm that estimates the target track directly from the TDOA measurements. It compensates the GPS data and decreases random error influence to the position precision. The new techniques presented in this thesis decrease the error in the position estimate. Simulation results show that the proposed tracking algorithm can improve the accuracy significantly.


2021 ◽  
Vol 11 (9) ◽  
pp. 4115
Author(s):  
Jiejie Liu ◽  
Yanfeng Bai ◽  
Xianwei Huang ◽  
Wei Tan ◽  
Suqin Nan ◽  
...  

The application of correlated imaging in endoscope, one of the research hotspots, may lead to multipath effect in the closed endoscopic environment. The model of multipath correlated imaging with a grayscale object is given, where the mismatch ratio and the reflection ratio are two key factors affecting imaging quality. The theoretical and experimental results show that multipath effect has an influence on the grayscale distribution and imaging quality of the reconstructed image, and the effect of the mismatch ratio is stronger than that of the reflection ratio. The conditions that the disturbance from multipath effect can be ignored in endoscopic applications are given.


2021 ◽  
Author(s):  
Jin Chang ◽  
Xingqun Zhan ◽  
Yawei Zhai ◽  
Shizhuang Wang ◽  
Kui Lin

Sign in / Sign up

Export Citation Format

Share Document