specific attenuation
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 20)

H-INDEX

18
(FIVE YEARS 3)

Author(s):  
Ju-Yu Chen ◽  
Silke Trömel ◽  
Alexander Ryzhkov ◽  
Clemens Simmer

AbstractRecent advances demonstrate the benefits of radar-derived specific attenuation at horizontal polarization (AH) for quantitative precipitation estimation (QPE) at S and X band. To date the methodology has, however, not been adapted for the widespread European C-band radars such as installed in the network of the German Meteorological Service (DWD, Deutscher Wetterdienst). Simulations based on a large dataset of drop size distributions (DSDs) measured over Germany are performed to investigate the DSD dependencies of the attenuation parameter αH for the AH estimates. The normalized raindrop concentration (Nw) and the change of differential reflectivity (ZDR) with reflectivity at horizontal polarization (ZH) are used to categorize radar observations into regimes for which scan-wise optimized αH values are derived. For heavier continental rain with ZH > 40 dBZ, the AH-based rainfall retrieval R(AH) is combined with a rainfall estimator using a substitute of specific differential phase (). We also assess the performance of retrievals based on specific attenuation at vertical polarization (AV). Finally, the regime-adapted hybrid QPE algorithms are applied to four convective cases and one stratiform case from 2017 to 2019, and compared to DWD’s operational RAdar-OnLine-ANeichung (RADOLAN) RW rainfall product, which is based on Zh only but adjusted to rain gauge measurements. For the convective cases, our hybrid retrievals outperform the traditional R(Zh) and pure R(AH/V) retrievals with fixed αH/V values when evaluated with gauge measurements and outperform RW when evaluated by disdrometer measurements. Potential improvements using ray-wise αH/V and segment-wise applications of the ZPHI method along the radials are discussed.


2021 ◽  
Vol 94 (1124) ◽  
pp. 20210068
Author(s):  
Caroline Ordóñez-Sanz ◽  
Mark Cowen ◽  
Neda Shiravand ◽  
Niall D MacDougall

Objectives: A simple, robust method, for optimising cone-beam CT (CBCT) dose and image quality for pelvis treatment, based on patient-specific attenuation. Methods: Methods were investigated for grouping patients into four imaging categories (small [S], medium [M], large [L], extra large [XL]), based on planning-CT CTDIvol, and phantoms constructed to represent each group. CBCTs with varying kV, mA and ms honed in on the best settings, with a bladder noise of 25 HU. A patient pilot study clinically verified the new imaging settings. Results: The planning CTDIvol is a reliable method for grouping patients. Phantom measurements from the S, M and L groups show doses significantly reduced (19–83% reduction), whilst the XL group required an increase of 39%. Phantom TLD measurements showed the number of scans needed to increase rectal organ at risk (OAR) dose by 1 Gy was 143 (S group) and 50 (M group). Images were qualitatively assessed as sufficient by clinicians. Conclusion: Patient-specific CBCT modes are in use clinically with dose reductions across all modes except Pelvis XL, keeping doses ALARP and images optimal. Consideration of OAR doses controls the number of CBCTs allowed to ensure adherence to OAR tolerance. Reporting CBCT doses in “scans per Gray” allows clinicians to make informed decisions regarding the imaging schedule and concomitant doses. Advances in knowledge: Patient grouping at planning CT, using CTDIvol, allows for CBCT imaging protocols to be selected based on patient specific attenuation. Reporting OAR doses in terms of “scans per Gray” allows translation of imaging dose risk to the Oncologist.


2021 ◽  
pp. 1-14
Author(s):  
Nicole K. Bolt ◽  
Janeen D. Loehr

Abstract Successful human interaction relies on people's ability to differentiate between the sensory consequences of their own and others' actions. Research in solo action contexts has identified sensory attenuation, that is, the selective perceptual or neural dampening of the sensory consequences of self-produced actions, as a potential marker of the distinction between self- and externally produced sensory consequences. However, very little research has examined whether sensory attenuation distinguishes self- from partner-produced sensory consequences in joint action contexts. The current study examined whether sensory attenuation of the auditory N1 or P2 ERPs distinguishes self- from partner-produced tones when pairs of people coordinate their actions to produce tone sequences that match a metronome pace. We did not find evidence of auditory N1 attenuation for either self- or partner-produced tones. Instead, the auditory P2 was attenuated for self-produced tones compared to partner-produced tones within the joint action. These findings indicate that self-specific attenuation of the auditory P2 differentiates the sensory consequences of one's own from others' actions during joint action. These findings also corroborate recent evidence that N1 attenuation may be driven by general rather than action-specific processes and support a recently proposed functional dissociation between auditory N1 and P2 attenuation.


Author(s):  
A.I. Baskakov ◽  
◽  
Bukhtsooj Odsuren ◽  
A.A. Komarov ◽  
Galbaatar Tuvdendorj ◽  
...  

In this paper we consider the calculation of the potential of a georadar on board an unmanned aerial vehicle designed to search for groundwater in arid and desert regions of Mongolia. The soil types prevailing in the regions under study were taken as soils as a medium for the propagation of radio waves. A feature of soils in arid and deserted regions is that they have almost the same dielectric constant, with only a slight difference in specific attenuation due to low water content. Soils with possible typical models of changes in the dielectric constant of the soil along the depth are considered.


Author(s):  
Ayodeji Gabriel Ashidi ◽  
Joseph Sunday Ojo ◽  
Oluwaseyi Julius Ajayi ◽  
Toluwalope Mary Akinmoladun

AbstractRain constitutes a major limitation to the performance and use of terrestrial and satellite communication systems with operational frequencies greater than 10 GHz. The situation gets further complicated by fast fluctuations in the received signal amplitude due to in homogeneities in atmospheric weather conditions; a phenomenon known as amplitude scintillation. The concurrent evaluation of the two phenomena guarantees a better fade margin determination for the planning of radio communication over any location. This work employs 3 years of in-situ measurement of temperature, humidity, rainfall rate and rainfall amount for the estimation of tropospheric amplitude scintillation and rain specific attenuation over Akure (7.17° N, 5.18° E, 358 m) South West Nigeria. Davis vantage pro weather station at 1-min integration time was used for the measurement and the ITU models for rain specific attenuation (ITU-R P.838-3) and amplitude scintillation (ITU–R 618-13) were employed for the estimation. Time series and statistical analyses of the phenomena show that rain attenuation is the more prominent cause of signal degradation at Ku-band frequencies. Nevertheless, the need to make an extra fade margin allowance of about 0.25 dB due to amplitude scintillation fade subsists to forestall any loss of synchronization on the link. Also, a 3-parameter power-law expression developed for estimating amplitude scintillation fade from rain attenuation performed excellently well, as indicated by average root mean square error (RMSE) and coefficient of determination (R2) values of 0.002151 and 0.8747, respectively.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nicolas Butel ◽  
Agnès Yu ◽  
Ivan Le Masson ◽  
Filipe Borges ◽  
Taline Elmayan ◽  
...  

AbstractTransgenes that are stably expressed in plant genomes over many generations could be assumed to behave epigenetically the same as endogenous genes. Here, we report that whereas the histone H3K9me2 demethylase IBM1, but not the histone H3K4me3 demethylase JMJ14, counteracts DNA methylation of Arabidopsis endogenous genes, JMJ14, but not IBM1, counteracts DNA methylation of expressed transgenes. Additionally, JMJ14-mediated specific attenuation of transgene DNA methylation enhances the production of aberrant RNAs that readily induce systemic post-transcriptional transgene silencing (PTGS). Thus, the JMJ14 chromatin modifying complex maintains expressed transgenes in a probationary state of susceptibility to PTGS, suggesting that the host plant genome does not immediately accept expressed transgenes as being epigenetically the same as endogenous genes.


2021 ◽  
Vol 14 (1) ◽  
pp. 53-69
Author(s):  
Robert Jackson ◽  
Scott Collis ◽  
Valentin Louf ◽  
Alain Protat ◽  
Die Wang ◽  
...  

Abstract. The U.S. Department of Energy Atmospheric Radiation Measurement program Tropical Western Pacific site hosted a C-band polarization (CPOL) radar in Darwin, Australia. It provides 2 decades of tropical rainfall characteristics useful for validating global circulation models. Rainfall retrievals from radar assume characteristics about the droplet size distribution (DSD) that vary significantly. To minimize the uncertainty associated with DSD variability, new radar rainfall techniques use dual polarization and specific attenuation estimates. This study challenges the applicability of several specific attenuation and dual-polarization-based rainfall estimators in tropical settings using a 4-year archive of Darwin disdrometer datasets in conjunction with CPOL observations. This assessment is based on three metrics: statistical uncertainty estimates, principal component analysis (PCA), and comparisons of various retrievals from CPOL data. The PCA shows that the variability in R can be consistently attributed to reflectivity, but dependence on dual-polarization quantities was wavelength dependent for 1<R<10mmh-1. These rates primarily originate from stratiform clouds and weak convection (median drop diameters less than 1.5 mm). The dual-polarization specific differential phase and differential reflectivity increase in usefulness for rainfall estimators in times with R>10mmh-1. Rainfall estimates during these conditions primarily originate from deep convective clouds with median drop diameters greater than 1.5 mm. An uncertainty analysis and intercomparison with CPOL show that a Colorado State University blended technique for tropical oceans, with modified estimators developed from video disdrometer observations, is most appropriate for use in all cases, such as when 1<R<10mmh-1 (stratiform rain) and when R>10mmh-1 (deeper convective rain).


2020 ◽  
Vol 21 (11) ◽  
pp. 2675-2690
Author(s):  
Wonbae Bang ◽  
GyuWon Lee ◽  
Alexander Ryzhkov ◽  
Terry Schuur ◽  
Kyo-Sun Sunny Lim

AbstractDifferences in atmospheric environments can have a significant impact on microphysical processes of precipitation. Dominant warm (cold) rain processes in East Asia (southern Great Plains of the United States) are implied by a large (small or constant) gradient of reflectivity at low levels in vertical reflectivity profiles. Long-term ground observations using two-dimensional video disdrometers were conducted in the southern Korean Peninsula (KOR) and Norman, Oklahoma, United States (OKL). Raindrop size distributions (RSD) and their moments in the two regions were analyzed in the framework of scaling normalized RSDs. Results show that the concentrations of small (big) raindrops were higher (smaller) in KOR than in OKL. KOR RSDs were also found to be characterized by relatively high characteristic number concentrations and small characteristic diameters when compared to OKL RSDs. The increases with increasing in both KOR and OKL at lower Z with the opposite trend at higher Z. In addition, OKL RSDs with indicate the existence of an equilibrium between coalescence and breakup processes. Rainfall estimation relationships between the rain rate R and radar variables were retrieved from scattering simulations at S-, C-, and X-band wavelengths. KOR RSDs showed relatively small horizontal reflectivity and specific differential phase shift at the same R and same wavelength when compared to OKL RSDs. The regional dependency was significant due to the different microphysical process in KOR and OKL. The specific attenuation of KOR was, however, similar to that of OKL only at S band, indicating an advantage of using specific attenuation in S band in rainfall estimation.


Sign in / Sign up

Export Citation Format

Share Document