moving kriging interpolation
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 11)

H-INDEX

12
(FIVE YEARS 4)

Author(s):  
Vu Tan Van ◽  
Nguyen Huynh Tan Tai ◽  
Nguyen Ngoc Hung

This paper presents a numerical approach for static bending and free vibration analysis of the functionally graded porous plates (FGPP) resting on the elastic foundation using the refined quasi-3D sinusoidal shear deformation theory (RQSSDT) combined with the Moving Kriging–interpolation meshfree method. The plate theory considers both shear deformation and thickness-stretching effects by the sinusoidal distribution of the in-plane displacements, satisfies the stress-free boundary conditions on the top and bottom surfaces of the plate without shear correction coefficient. The advantage of the plate theory is that the displacement field of plate is approximated by only four variables leading to reduce computational efforts. Comparison studies are performed for the square FGPP with simply supported all edges to verify the accuracy of the present approach. The effect of the aspect ratio, volume fraction exponent, and elastic foundation parameters on the static deflections and natural frequency of FGPP are also investigated and discussed. Keywords: meshless method; Moving Kriging interpolation; refined quasi-3D theory; porous functionally\break graded plate; Pasternak foundation.


2019 ◽  
Vol 16 (04) ◽  
pp. 1850100 ◽  
Author(s):  
Chien H. Thai ◽  
H. Nguyen-Xuan

A moving Kriging interpolation (MKI) meshfree method based on naturally stabilized nodal integration (NSNI) scheme is presented to study static, free vibration and buckling behaviors of isotropic Reissner–Mindlin plates. Gradient strains are directly computed at nodes similar to the direct nodal integration (DNI). Outstanding features of the current approach are to alleviate instability solutions in the DNI and to decrease computational cost significantly when compared with the traditional high-order Gauss quadrature scheme. The NSNI is a naturally implicit gradient expansion and does not employ a divergence theorem for strain fields as addressed in the stabilized conforming nodal integration method. The present formulation is derived from the Galerkin weak form and avoids a naturally shear-locking phenomenon without using any other techniques. Thanks to satisfied Kronecker delta function property of MKI shape function, essential boundary conditions (BCs) are easily and directly enforced similar to the finite element method. A variety of numerical examples with various geometries, stiffness ratios and BCs are studied to verify the effectiveness of the present approach.


Sign in / Sign up

Export Citation Format

Share Document