signless laplacian matrix
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 14)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 37 ◽  
pp. 709-717
Author(s):  
Mustapha Aouchiche ◽  
Bilal A. Rather ◽  
Issmail El Hallaoui

For a simple connected graph $G$, let $D(G)$, $Tr(G)$, $D^{L}(G)=Tr(G)-D(G)$, and $D^{Q}(G)=Tr(G)+D(G)$ be the distance matrix, the diagonal matrix of the vertex transmissions, the distance Laplacian matrix, and the distance signless Laplacian matrix of $G$, respectively. Atik and Panigrahi [2] suggested the study of the problem: Whether all eigenvalues, except the spectral radius, of $ D(G) $ and $ D^{Q}(G) $ lie in the smallest Ger\v{s}gorin disk? In this paper, we provide a negative answer by constructing an infinite family of counterexamples.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Tingzeng Wu ◽  
Tian Zhou

Let G be a graph with n vertices, and let L G and Q G denote the Laplacian matrix and signless Laplacian matrix, respectively. The Laplacian (respectively, signless Laplacian) permanental polynomial of G is defined as the permanent of the characteristic matrix of L G (respectively, Q G ). In this paper, we show that almost complete graphs are determined by their (signless) Laplacian permanental polynomials.


2021 ◽  
Vol 10 (1) ◽  
pp. 9-22
Author(s):  
Kate Lorenzen

Abstract Graphs can be associated with a matrix according to some rule and we can find the spectrum of a graph with respect to that matrix. Two graphs are cospectral if they have the same spectrum. Constructions of cospectral graphs help us establish patterns about structural information not preserved by the spectrum. We generalize a construction for cospectral graphs previously given for the distance Laplacian matrix to a larger family of graphs. In addition, we show that with appropriate assumptions this generalized construction extends to the adjacency matrix, combinatorial Laplacian matrix, signless Laplacian matrix, normalized Laplacian matrix, and distance matrix. We conclude by enumerating the prevelance of this construction in small graphs for the adjacency matrix, combinatorial Laplacian matrix, and distance Laplacian matrix.


Author(s):  
Hilal A. Ganie

Let [Formula: see text] be a digraph of order [Formula: see text] and let [Formula: see text] be the adjacency matrix of [Formula: see text] Let Deg[Formula: see text] be the diagonal matrix of vertex out-degrees of [Formula: see text] For any real [Formula: see text] the generalized adjacency matrix [Formula: see text] of the digraph [Formula: see text] is defined as [Formula: see text] This matrix generalizes the spectral theories of the adjacency matrix and the signless Laplacian matrix of [Formula: see text]. In this paper, we find [Formula: see text]-spectrum of the joined union of digraphs in terms of spectrum of adjacency matrices of its components and the eigenvalues of an auxiliary matrix determined by the joined union. We determine the [Formula: see text]-spectrum of join of two regular digraphs and the join of a regular digraph with the union of two regular digraphs of distinct degrees. As applications, we obtain the [Formula: see text]-spectrum of various families of unsymmetric digraphs.


Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Yaser Alizadeh ◽  
Shariefuddin Pirzada

Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 792
Author(s):  
Luis Medina ◽  
Hans Nina ◽  
Macarena Trigo

In this article, we find sharp lower bounds for the spectral radius of the distance signless Laplacian matrix of a simple undirected connected graph and we apply these results to obtain sharp upper bounds for the distance signless Laplacian energy graph. The graphs for which those bounds are attained are characterized.


Sign in / Sign up

Export Citation Format

Share Document