cardiac neural crest
Recently Published Documents


TOTAL DOCUMENTS

180
(FIVE YEARS 28)

H-INDEX

44
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Colin J Dinsmore ◽  
Philippe Soriano

Serum response factor (SRF) is an essential transcription factor that influences many cellular processes including cell proliferation, migration, and differentiation. SRF directly regulates and is required for immediate early gene (IEG) and actin cytoskeleton-related gene expression. SRF coordinates these competing transcription programs through discrete sets of cofactors, the Ternary Complex Factors (TCFs) and Myocardin Related Transcription Factors (MRTFs). The relative contribution of these two programs to in vivo SRF activity and mutant phenotypes is not fully understood. To study how SRF utilizes its cofactors during development, we generated a knock-in Srfα1I allele in mice harboring point mutations that disrupt SRF-MRTF-DNA complex formation but leave SRF-TCF activity unaffected. Homozygous Srfα1I/α1I mutants die at E10.5 with notable cardiovascular phenotypes, and neural crest conditional mutants succumb at birth to defects of the cardiac outflow tract but display none of the craniofacial phenotypes associated with complete loss of SRF in that lineage. Our studies further support an important role for MRTF mediating SRF function in cardiac neural crest and suggest new mechanisms by which SRF regulates transcription during development.


EMBO Reports ◽  
2021 ◽  
Author(s):  
Wen Chen ◽  
Xuanyu Liu ◽  
Wenke Li ◽  
Huayan Shen ◽  
Ziyi Zeng ◽  
...  

2021 ◽  
Vol 8 (8) ◽  
pp. 89
Author(s):  
Shannon Erhardt ◽  
Mingjie Zheng ◽  
Xiaolei Zhao ◽  
Tram P. Le ◽  
Tina O. Findley ◽  
...  

The neural crest (NC) is a multipotent and temporarily migratory cell population stemming from the dorsal neural tube during vertebrate embryogenesis. Cardiac neural crest cells (NCCs), a specified subpopulation of the NC, are vital for normal cardiovascular development, as they significantly contribute to the pharyngeal arch arteries, the developing cardiac outflow tract (OFT), cardiac valves, and interventricular septum. Various signaling pathways are shown to orchestrate the proper migration, compaction, and differentiation of cardiac NCCs during cardiovascular development. Any loss or dysregulation of signaling pathways in cardiac NCCs can lead to abnormal cardiovascular development during embryogenesis, resulting in abnormalities categorized as congenital heart defects (CHDs). This review focuses on the contributions of cardiac NCCs to cardiovascular formation, discusses cardiac defects caused by a disruption of various regulatory factors, and summarizes the role of multiple signaling pathways during embryonic development. A better understanding of the cardiac NC and its vast regulatory network will provide a deeper insight into the mechanisms of the associated abnormalities, leading to potential therapeutic advancements.


2021 ◽  
pp. 197140092110217
Author(s):  
Takahiro Ota ◽  
Masaki Komiyama

Background The neural crest is a transient structure present in early embryogenesis. Cephalic neural crest cells migrate into the pharyngeal arches and the frontonasal process that becomes the forehead and midfacial structures. They also contribute to forming the media of the arteries of the circle of Willis and their branches. The cardiac neural crest produces vascular smooth muscle cells in the ascending aorta, cardiac septum and coronary arteries. Methods In this review, we evaluate the role of the neural crest in moyamoya disease and the pathological implications from the concurrence of moyamoya disease and cardiovascular diseases from the point of view of neural crest cell distributions. Results Midline craniofacial and central nervous system anomalies with eye anomalies, morning glory disc anomaly in patients with moyamoya disease can both be explained as a subtype of cephalic neurocristopathy. Further, the association between moyamoya disease and cardiac manifestations (congenital cardiac defects and coronary artery disease) have also been reported. Both the cephalic neural crest and cardiac neural crest contribute to these concurrent arterial diseases, as cardio-cephalic neurocristopathy. Conclusion The concept of cephalic/cardio-cephalic neurocristopathy provides a new perspective to understanding the underlying aetiological associations and to developing future therapeutic approaches for concomitant moyamoya disease and cardiovascular diseases.


Author(s):  
Shun Yan ◽  
Jin Lu ◽  
Kai Jiao

The cardiac neural crest cells (cNCCs) is a transient, migratory cell population that contribute to the formation of major arteries and the septa and valves of the heart. Abnormal development of cNCCs leads to a spectrum of congenital heart defects that mainly affect the outflow region of the hearts. Signaling molecules and transcription factors are the best studied regulatory events controlling cNCC development. In recent years, however, accumulated evidence supports that epigenetic regulation also plays an important role in cNCC development. Here, we summarize the functions of epigenetic regulators during cNCC development as well as cNCC related cardiovascular defects. These factors include ATP-dependent chromatin remodeling factors, histone modifiers and DNA methylation modulators. In many cases, mutations in the genes encoding these factors are known to cause inborn heart diseases. A better understanding of epigenetic regulators, their activities and their roles during heart development will ultimately contribute to the development of new clinical applications for patients with congenital heart disease.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kazuki Kodo ◽  
Keiko Uchida ◽  
Hiroyuki Yamagishi

Congenital heart disease (CHD) is the most common life-threatening congenital anomaly. CHD occurs due to defects in cardiovascular development, and the majority of CHDs are caused by a multifactorial inheritance mechanism, which refers to the interaction between genetic and environmental factors. During embryogenesis, the cardiovascular system is derived from at least four distinct cell lineages: the first heart field, second heart field, cardiac neural crest, and proepicardial organ. Understanding the genes involved in each lineage is essential to uncover the genomic architecture of CHD. Therefore, we provide an overview of recent research progress using animal models and mutation analyses to better understand the molecular mechanisms and pathways linking cardiovascular development and CHD. For example, we highlight our recent work on genes encoding three isoforms of inositol 1,4,5-trisphosphate receptors (IP3R1, 2, and 3) that regulate various vital and developmental processes, which have genetic redundancy during cardiovascular development. Specifically, IP3R1 and 2 have redundant roles in the atrioventricular cushion derived from the first heart field lineage, whereas IP3R1 and 3 exhibit redundancy in the right ventricle and the outflow tract derived from the second heart field lineage, respectively. Moreover, 22q11.2 deletion syndrome (22q11DS) is highly associated with CHD involving the outflow tract, characterized by defects of the cardiac neural crest lineage. However, our studies have shown that TBX1, a major genetic determinant of 22q11DS, was not expressed in the cardiac neural crest but rather in the second heart field, suggesting the importance of the cellular interaction between the cardiac neural crest and the second heart field. Comprehensive genetic analysis using the Japanese genome bank of CHD and mouse models revealed that a molecular regulatory network involving GATA6, FOXC1/2, TBX1, SEMA3C, and FGF8 was essential for reciprocal signaling between the cardiac neural crest and the second heart field during cardiovascular development. Elucidation of the genomic architecture of CHD using induced pluripotent stem cells and next-generation sequencing technology, in addition to genetically modified animal models and human mutation analyses, would facilitate the development of regenerative medicine and/or preventive medicine for CHD in the near future.


2020 ◽  
Vol 6 (49) ◽  
pp. eaba9950
Author(s):  
Konstantinos E. Hatzistergos ◽  
Michael A. Durante ◽  
Krystalenia Valasaki ◽  
Amarylis C. B. A. Wanschel ◽  
J. William Harbour ◽  
...  

The degree to which populations of cardiac progenitors (CPCs) persist in the postnatal heart remains a controversial issue in cardiobiology. To address this question, we conducted a spatiotemporally resolved analysis of CPC deployment dynamics, tracking cells expressing the pan-CPC gene Isl1. Most CPCs undergo programmed silencing during early cardiogenesis through proteasome-mediated and PRC2 (Polycomb group repressive complex 2)–mediated Isl1 repression, selectively in the outflow tract. A notable exception is a domain of cardiac neural crest cells (CNCs) in the inflow tract. These “dorsal CNCs” are regulated through a Wnt/β-catenin/Isl1 feedback loop and generate a limited number of trabecular cardiomyocytes that undergo multiple clonal divisions during compaction, to eventually produce ~10% of the biventricular myocardium. After birth, CNCs continue to generate cardiomyocytes that, however, exhibit diminished clonal amplification dynamics. Thus, although the postnatal heart sustains cardiomyocyte-producing CNCs, their regenerative potential is likely diminished by the loss of trabeculation-like proliferative properties.


Sign in / Sign up

Export Citation Format

Share Document