ion exchangers
Recently Published Documents


TOTAL DOCUMENTS

1344
(FIVE YEARS 91)

H-INDEX

53
(FIVE YEARS 3)

2021 ◽  
pp. 26-41
Author(s):  
T.K. Jumadilov ◽  
◽  
Kh. Khimersen ◽  
R.G. Kondaurov ◽  
A.M. Imangazy ◽  
...  

The aim of this research work is comparative study of influence of ionic radii of heavy metal ions of neodymium and scandium on their sorption process from corresponding water solutions of sulfates by sorbents such as individual ion-exchangers Amberlite IR120, AB-17-8 and mixture of these sorbents related to interpolymer system Amberlite IR120-AB-17-8 at the various molar relations. Laboratory experiments of this work of sorption heavy ions of neodymium and scandium were carried out and inves-tigated by using the following physico-chemical methods of analysis: conductometry-based on the electrical conductor, pH-metry-based on the concentration of hydrogen ions, colorimetry, atomic-emission spectro-scopy. Ion-exchangers in the interpolymer system undergo remote interaction with further transition into highly ionized state. There is formation of optimal conformation in structure of the initial ion- exchangers. Significant increase of ionization of the ion-exchange resins occurs at molar ratio Amberlite IR120:AB-17-8 = 5:1. Significant increase of sorption properties is observed at this ratio due to mutual activation of ion-exchangers. The extraction rate of Nd3+ ions in 48 hours is 42.32%, and the extraction rate of Sc3+ ions is 38.06%. A possible reason for higher sorption of neodymium ions in comparison with scandium ions is maximum conformity of globes of internode links of Amberlite IR120 and AB-17-8 after activation to sizes of neodymium sulfate in an aqueous medium.


Author(s):  
V. S. Soldatov ◽  
L. N. Shachenkova ◽  
E. G. Kasandrovich ◽  
P. V. Nesteronok

Curves of potentiometric titration of fully protonized fibrous ion exchangers with potassium hydroxide against the background of 1 M KCl in the presence of chlorides of Ni2+, Со2+, Сu2+ and Ca2+ were obtained. The ion exchangers were synthesized by modifying of industrial polyacrylonitrile fiber with diethylenetriamine and triethylenetetraamine and predominantly contained functional groups R-CO-NH- (CH2CH2NH)nH (n = 2 or 3) and a small amount of carboxyl groups. The sorption of Ni2+, Со2+, Сu2+ и Ca2+by ion exchangers was calculated from the data obtained depending on the pH of the medium. It was found that the investigated ion exchangers with high selectivity sorb heavy metal ions in a wide range of acidity of solutions (pH 2–9) due to the formation of metal-polymer complexes with polyamine functional groups. The maximum sorption capacity is 1.5–2.7 and 4–5 meq/g for ion exchangers with n = 2 and 3, respectively.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7067
Author(s):  
Yi-Gong Chen ◽  
Weronika Sofińska-Chmiel ◽  
Gui-Yuan Lv ◽  
Dorota Kołodyńska ◽  
Su-Hong Chen

Ion exchange technique as the reversible exchange of ions between the substrate and the surrounding medium can be an effective way of removing traces of ion impurities from the waters and wastewaters and obtaining a product of ultrapure quality. Therefore, it can be used in analytical chemistry, hydrometallurgy, purification and separation of metal ions, radioisotopes and organic compounds, and it also finds great application in water treatment and pollution control. In the presented paper, the new trends for ion exchanger characteristics determination and application are presented. Special attention is paid to the ion exchangers with multifunctionality for heavy metal ions removal. They show superior actions such as sorption capacity values with excellent resistance to fouling and the possibility of application in the co-current or modern packed bed counter-current systems, as well as for the condensate polishing or the conventional mixed bed systems in combination with other resins. The results of the paper are expected to help researchers to establish a powerful strategy to find a suitable ion exchanger for heavy metal ions removal from waters and wastewaters. It is important because the best ion exchangers are selected for a specific application during laboratory tests taking into account the composition of the feed solution, pH, type of ion exchangers and then the column breakthrough tests. Therefore, the optical profilometry and the X-ray photoelectron spectroscopy can prove beneficial for this purpose in the case of three different ion exchangers such as Dowex M 4195, Amberlite IRA 743 and Purolite Arsen Xnp.


2021 ◽  
Vol 57 (11) ◽  
pp. 1152-1157
Author(s):  
R. I. Korneikov ◽  
V. I. Ivanenko ◽  
S. V. Aksenova ◽  
A. A. Shirokaya ◽  
A. I. Novikov
Keyword(s):  

Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6212
Author(s):  
T. Hirabayashi ◽  
S. Yasuhara ◽  
S. Shoji ◽  
A. Yamaguchi ◽  
H. Abe ◽  
...  

In this study, hydrogen boride films are fabricated by ion-exchange treatment on magnesium diboride (MgB2) films under ambient temperature and pressure. We prepared oriented MgB2 films on strontium titanate (SrTiO3) substrates using pulsed laser deposition (PLD). Subsequently, these films were treated with ion exchangers in acetonitrile solution. TOF-SIMS analysis evidenced that hydrogen species were introduced into the MgB2 films by using two types of ion exchangers: proton exchange resin and formic acid. According to the HAXPES analysis, negatively charged boron species were preserved in the films after the ion-exchange treatment. In addition, the FT-IR analysis suggested that B-H bonds were formed in the MgB2 films following the ion-exchange treatment. The ion-exchange treatment using formic acid was more efficient compared to the resin treatment; with respect to the amount of hydrogen species introduced into the MgB2 films. These ion-exchanged films exhibited photoinduced hydrogen release as observed in a powder sample. Based on the present study, we expect to be able to control the morphology and hydrogen content of hydrogen boride thin films by optimising the ion-exchange treatment process, which will be useful for further studies and device applications.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5916
Author(s):  
Chaoqun Bian ◽  
Yichang Yang ◽  
Xiaohui Luo ◽  
Wenxia Zhang ◽  
Jie Zhang ◽  
...  

Given the numerous industrial applications of zeolites as adsorbents, catalysts, and ion-exchangers, the development of new zeolite structures is highly desired to expand their practical applications. Currently, a general route to develop new zeolite structures is to use interlayer expansion agents to connect layered silicates. In this review, we briefly summarize the novel zeolite structures constructed from the lamellar precursor zeolites MWW, RUB-36, PREFER, Nu-6(1), COK-5, and PLS-1 via interlayer expansion. The contents of the summary contain detailed experiments, physicochemical characterizations, possible expansion mechanisms, and catalytic properties. In addition, the insertion of metal heteroatoms (such as Ti, Fe, Sn) into the layered zeolite precursor through interlayer expansion, which could be helpful to modify the catalytic function, is discussed.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5402
Author(s):  
Talkybek Jumadilov ◽  
Bakytgul Totkhuskyzy ◽  
Zamira Malimbayeva ◽  
Ruslan Kondaurov ◽  
Aldan Imangazy ◽  
...  

The aim of the work is to provide a comparative study of influence of ionic radii of neodymium and scandium ions on their sorption process from corresponding sulfates by individual ion exchangers Amberlite IR120, AB-17-8 and interpolymer system Amberlite IR120-AB-17-8. Experiments were carried out by using the following physicochemical methods of analysis: conductometry, pH-metry, colorimetry, and atomic-emission spectroscopy. Ion exchangers in the interpolymer system undergo remote interactions with a further transition into highly ionized state. There is the formation of optimal conformation in the structure of the initial ion exchangers. A significant increase of ionization of the ion-exchange resins occurs at molar ratio of Amberlite IR120:AB-17-8 = 5:1. A significant increase of sorption properties is observed at this ratio due to the mutual activation of ion exchangers. The average growth of sorption properties in interpolymer system Amberlite IR120:AB-17-8 = 5:1 is over 90% comparatively to Amberlite IR120 and almost 170% comparatively to AB-17-8 for neodymium ions sorption; for scandium ions sorption the growth is over 65% comparatively to Amberlite IR120 and almost 90% comparatively to AB-17-8. A possible reason for higher sorption of neodymium ions in comparison with scandium ions is maximum conformity of globes of internode links of Amberlite IR120 and AB-17-8 after activation to sizes of neodymium sulfate in an aqueous medium.


Sign in / Sign up

Export Citation Format

Share Document