failure load
Recently Published Documents


TOTAL DOCUMENTS

625
(FIVE YEARS 223)

H-INDEX

34
(FIVE YEARS 5)

2022 ◽  
pp. 036354652110629
Author(s):  
Junjie Xu ◽  
Yufeng Li ◽  
Xueying Zhang ◽  
Kang Han ◽  
Zipeng Ye ◽  
...  

Background: Recently, the biceps was rerouted into a newly fabricated bicipital groove for in situ superior capsular reconstruction (SCR), resulting in promising time-zero cadaveric and clinical outcomes. However, no studies have determined the in vivo biomechanical and histological processes after the biceps is transposed to a nonanatomic position. Purpose: To explore the in vivo biomechanical and histological processes of the rerouting biceps tendon to treat chronic irreparable rotator cuff tears (IRCTs) in a rabbit model. Study Design: Controlled laboratory study. Methods: A total of 94 skeletally mature male rabbits were used to create a chronic IRCT model in the supraspinatus tendon. Then, the biceps rerouting procedures were performed in rabbits with chronic IRCT. Eighteen rabbits were sacrificed at 1, 3, 6, 9, and 12 weeks postoperatively for biomechanical testing, micro—computed tomography scanning, and histological analysis. The biomechanical and histological changes of intra- and extra-articular portions of the rerouting biceps were evaluated at each time point, with the contralateral native superior capsule (NSC) and the native biceps (NB) as controls, respectively. The morphology and bone formation of the fabricated bicipital grooves were evaluated, with native grooves as controls. Results: The intra-articular rerouting biceps tendon was progressively remodeled over time, displaying denser fibers and more mature collagen than those of the NSC, with gradual improvements in the tendon-to-bone healing interface from 6 to 12 weeks. Consequently, the failure load and stiffness of the intra-articular rerouting biceps portion increased with time and were significantly higher than those of the NSC from 9 weeks. Similarly, the extra-articular portion of the rerouting biceps progressively healed into a new bicipital groove, as demonstrated by a smaller tendon-to-bone interface from 6 to 12 weeks, resulting in greater failure load and stiffness at 9 and 12 weeks than those of the NB attachment. The newly fabricated bicipital groove showed similar morphology to that of the native groove with sufficient trabecular bone formed underneath. Conclusion: The rerouting biceps could progressively remodel and heal into the newly fabricated bicipital groove over time, resulting in greater biomechanical performances in intra- and extra-articular portions than the NSC and the NB attachment. Clinical Relevance: The biceps rerouting technique may be a feasible procedure to perform in situ SCR to treat IRCT in the future clinical practice; however, more clinical evidence is required.


2022 ◽  
Author(s):  
Matheus Brendon Francisco ◽  
João Luiz Junho Pereira ◽  
Lucas Antonio de Oliveira ◽  
Sebastião Da Cunha ◽  
Guilherme Ferreira Gomes

Abstract The optimization of five different responses of an auxetic model was considered: mass; critical buckling load under compression effort; natural frequency; Poisson’s ratio; and failure load. The Response Surface Methodology was applied, and a new meta-heuristic of optimization called the Multi-Objective Lichtenberg Algorithm was used to find the optimized configuration of the model. It was possible to increase the failure load by 26,75% in compression performance optimization. Furthermore, in the optimization of modal performance, it was possible to increase the natural frequency by 37.43%. Finally, all 5 responses analyzed simultaneously were optimized. In this case, it was possible to increase the critical buckling load by 42.55%, the failure load by 28.70% and reduce the mass and Poisson’s ratio by 15.97% and 11%, respectively. This paper shows something unprecedented in the literature to date when evaluating in a multi-objective optimization problem, the compression and modal performance of an auxetic reentrant model.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Toni Wendler ◽  
Melanie Edel ◽  
Robert Möbius ◽  
Johannes Fakler ◽  
Georg Osterhoff ◽  
...  

Abstract Background Intraoperative proximal femoral fractures (IPFF) are relevant complications during total hip arthroplasty. Fixation using cerclage wires (CW) represents a minimally-invasive technique to address these fractures through the same surgical approach. The goal of treatment is to mobilise the patient as early as possible, which requires high primary stability. This study aimed to compare different cerclage wire configurations fixing IPFF with regard to biomechanical primary stability. Methods Standardised IPFF (type II, Modified Mallory Classification) were created in human fresh frozen femora and were fixed either by two or three CW (1.6 mm, stainless steel). All cadaveric specimens (n = 42) were randomised to different groups (quasi-static, dynamic) or subgroups (2 CW, 3 CW) stratified by bone mineral density determined by Dual Energy X-ray Absorptiometry. Using a biomechanical testing setup, quasi-static and dynamic cyclic failure tests were carried out. Cyclic loading started from 200 N to 500 N at 1 Hz with increasing peak load by 250 N every 100 cycles until failure occurred or maximum load (5250 N) reached. The change of fracture gap size was optically captured. Results No significant differences in failure load after quasi-static (p = 0.701) or dynamic cyclic loading (p = 0.132) were found between the experimental groups. In the quasi-static load testing, all constructs resisted 250% of the body weight (BW) of their corresponding body donor. In the dynamic cyclic load testing, all but one construct (treated by 3 CW) resisted 250% BW. Conclusions Based on this in vitro data, both two and three CW provided sufficient primary stability according to the predefined minimum failure load (250% BW) to resist. The authors recommend the treatment using two CW because it reduces the risk of vascular injury and shortens procedure time.


Author(s):  
Yanwen Zhang ◽  
Jiaqi Che ◽  
Changlu Yu ◽  
Hanxiang Wang ◽  
Mingchao Du

At present, buckling pin in the bypass of piping as pressure relief valve has been gradually utilized in the low-concentration coal-bed methane (CBM), which bends to release pressure when the main valve fails leading to pipeline blockage. However, current researches mainly focused on the buckling behavior of hydraulic cylinder rod or rod string, and less consideration was given to the operational reliability of buckling pin valves. This paper deduced the calculation formula of the critical failure load based on Euler formula in the buckling pin under buckling load. Besides, three finite element models (FEM) based on Johnson−Cook constitutive model were compared to predict failure strength of buckling pin which were verified by experiment. In addition, the defect sensitivity analysis of the buckling pin under different initial geometric defects rate was carried out. The results showed that a) the experimental value of the critical failure load in the buckling pin was 206.04 N and the bending position was in the middle of the buckling pin; b) the analysis result adopting explicit dynamic method was in best agreement with the experimental results within deviation of 0.24%; and c) the initial geometric defect of buckling pin should be controlled within 1%. This study provides an important reference to predict the critical failure load of the buckling pin valve and achieve safe transportation of low-concentration CBM.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Junfeng Chen ◽  
Wei Zhang ◽  
Gang Pang ◽  
Qingling Meng ◽  
Youyu Zhu ◽  
...  

Abstract Background The anatomical variation of the coracoglenoid space has the potential to influence the stability of scapular neck fractures. This paper aimed to investigate the mechanical mechanism underlying the influence of different coracoglenoid space types on scapular neck fractures by morphometric analysis and biomechanical experiments. Methods The morphology of 68 dried scapulae (left: 36; right: 32) was studied. Two variables, the length of the coracoglenoid distance (CGD) and the coracoglenoid notch (CGN), were measured. The distribution of CGN/CGD × 100% was used to identify the morphology of the coracoglenoid space. Each specimen was tested for failure under static axial compression loading. The average failure load, stiffness, and energy were calculated. Results Two coracoglenoid space types were identified. The incidence of Type I (‘‘hook’’ shape) was 53%, and that of Type II (‘‘square bracket’’ shape) was 47%. The CGD and CGN were significantly higher for type I than type II (13.81 ± 0.74 mm vs. 11.50 ± 1.03 mm, P < 0.05; 4.74 ± 0.45 mm vs. 2.61 ± 0.45 mm, P < 0.05). The average maximum failure load of the two types was 1270.82 ± 318.85 N and 1529.18 ± 467.29 N, respectively (P = 0.011). The stiffness and energy were significantly higher for type II than type I (896.75 ± 281.14 N/mm vs. 692.91 ± 217.95 N/mm, P = 0.001; 2100.38 ± 649.54 N × mm vs. 1712.71 ± 626.02 N × mm, P = 0.015). Conclusions There was great interindividual variation in the anatomical morphology of the coracoglenoid space. Type I (hook-like) spaces bore lower forces, were less stiff, and bore less energy, which may constitute an anatomical predisposition to scapular neck fractures.


2022 ◽  
Vol 961 (1) ◽  
pp. 012013
Author(s):  
Raghad Adel ◽  
Ressol R. Shakir

Abstract in geotechnical engineering, foundation piles are ideal for deep foundations that cannot bear higher loads. This architectural expansion places a great deal of responsibility on the engineer to anticipate the appropriate load for the constructor. Unfortunately, calculations of the pile’s bearing capacity are not accessible. It has always been a source of concern for geotechnical engineers, as the structure’s safety depends on the pile’s bearing capacity and gives it a safe value. These research tests are previously known pile load test data from several locations in Nasiriyah to determine the ultimate load-carrying capacity using various interpreting methodologies. A database that was used to test the pile load for three different areas in Nasiriyah, southern Iraq: The Main Drain River Bridge Project, the Al-Eskan Interchange Project, and the Al-Hawra Hospital, as determined by analytical methods, as well as evaluating the final loading values resulting from the methods used, by ASTM D-1143, American and British Standard Code of Practice BS 800. The final capacity for the pile bearing is estimated using these approaches, which are depicted in the form of a graph-based on field data. Chin-Kondner and Brinch Hansen algorithms anticipate the highest failure load for all piles based on the comparison. On average, Chin–Kondner’s ultimate load is 22% higher than Hansen’s maximum load for the 22 pile load tests. Decourt and DeBeer, and Mazurkiewicz’s techniques yielded the closest average failure load. Buttler-Hoy approach yielded the smallest failure load.


2021 ◽  
Vol 24 (2) ◽  
pp. 137-143
Author(s):  
Samer Ali Naji ◽  
Alaa H. Abed

Rutting is considered as the most generated distress in Iraqi roads as a result of the high temperature and excessive traffic load. So, it is essential to utilize polymer modified binder to increase the performance of pavements. The objective of this paper is to assess the effect of aggregate gradation and filler content on the rutting formation of Colored Hot Mix Asphalt CHMA. The HMA was colored by using iron oxide as filler to produce red HMA. Two blends were used: fine and coarse with two different types of filler iron oxide for CHMA and limestone for conventional HMA with two filler content 6% and 10%. Neat (AC 40-50) and modified asphalt (AC 40-50 + 4%SBS) were used. Tests are held on adding 4% Styrene Butadiene Styrene )SBS( by the weight of neat asphalt (AC 40-50) to raise the performance grade by two grades from PG (64-16) to PG (76-16) [1] and [2]. The wheel tracking test is used to assess the rut depth of the CHMA. The test results showed that the using iron oxide with neat asphalt increase the rut depth resistance by 200 and 400 failure load cycles than mixtures using limestone (cycles that mix reach 25 mm rut depth) for fine and coarse mix respectively. Also, the effect of gradation shows that the fine mixture fails at 4000 cycles while the coarse mixture fails at 1800 cycles for 6% limestone mixtures.  Increasing the iron oxide content from 6% to 10% leads to increase the failure load cycles by 2200 and 1200 cycles for fine and coarse mixture respectively using modified asphalt. The fine mixture with 10% iron oxide using modified asphalt gives the best performance with 7000 cycles than the coarse mixture with 10% filler content and modified asphalt with 4000 cycles. irrespective the filler and type of binder, the dense mixtures using iron oxide as filler exhibit better resistance to rutting formation than coarse mixtures.


2021 ◽  
pp. 175319342110642
Author(s):  
Gino Vissers ◽  
Wan M. R. Rusli ◽  
Alexander Scarborough ◽  
Maxim D. Horwitz ◽  
Gordon J. McArthur ◽  
...  

This human cadaver study investigated whether flexor tendon repairs performed with round-bodied needles had a higher risk of pull-out compared with those performed with cutting needles. Forty human cadaver tendons were repaired (20 with each type of needle), subjected to tensile traction testing and evaluated by failure load and mode of failure. The average failure load was 50 N (SD 13 N) for tendons repaired with round-bodied needles, compared with 49 N (SD 16 N) for tendons repaired with cutting needles. Round-bodied needles resulted in more suture pull-out (18 out of 20 tendons) than cutting needles (6 out of 20 tendons). We found no differences in failure load, but significant differences in the mode of failure between round-bodied and cutting needles when used for cadaveric flexor tendon repair.


Sign in / Sign up

Export Citation Format

Share Document