dna polymerase ii
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 3)

H-INDEX

28
(FIVE YEARS 0)

Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1064
Author(s):  
Mahdi Moradpour ◽  
Siti Nor Akmar Abdullah ◽  
Parameswari Namasivayam

Knowledge of heat-tolerant/sensitive cultivars based on morpho-physiological indicators and an understanding of the action and interaction of different genes in the molecular network are critical for genetic improvement. To screen these indicators, the physiological performance of two different varieties of white and red cabbages (B. oleracea var. capitate f. alba and f. rubra, respectively) under heat stress (HS) and non-stress (NS) was evaluated. Cultivars that showed considerable cell membrane thermostability and less reduction in chlorophyll content with better head formation were categorized as the heat-tolerant cultivars (HTC), while those with reduction in stomatal conductance, higher reduction incurred in chlorophyll and damage to thylakoid membranes are categorized as the heat-sensitive cultivars (HSC). Expression profiling of key genes in the HS response network, including BoHSP70 (HEAT SHOCK PROTEIN 70), BoSCL13 (SCARECROW-LIKE 13) and BoDPB3-1 (transcriptional regulator DNA POLYMERASE II SUBUNIT B3-1 (DPB3-1))/NUCLEAR FACTOR Y SUBUNIT C10 (NF-YC10), were evaluated in all cultivars under HS compared to NS plants, which showed their potential as molecular indicators to differentiate HTC from HSC. Based on the results, the morphophysiological and molecular indicators are applicable to cabbage cultivars for differentiating HTC from HSC, and potential target genes for genome editing were identified for enhancing food security in the warmer regions of the world.


2011 ◽  
Vol 286 (44) ◽  
pp. 38638-38648 ◽  
Author(s):  
Zhenming Du ◽  
Jiajing Liu ◽  
Clayton D. Albracht ◽  
Alice Hsu ◽  
Wen Chen ◽  
...  

2011 ◽  
Vol 5 (2) ◽  
pp. 233-235 ◽  
Author(s):  
Jiajing Liu ◽  
Zhenming Du ◽  
Clayton D. Albracht ◽  
Roshni O. Naidu ◽  
Kenneth V. Mills ◽  
...  

2005 ◽  
Vol 187 (22) ◽  
pp. 7607-7618 ◽  
Author(s):  
Robert W. Maul ◽  
Mark D. Sutton

ABSTRACT The Escherichia coli β sliding clamp protein is proposed to play an important role in effecting switches between different DNA polymerases during replication, repair, and translesion DNA synthesis. We recently described how strains bearing the dnaN159 allele, which encodes a mutant form of the β clamp (β159), display a UV-sensitive phenotype that is suppressed by inactivation of DNA polymerase IV (M. D. Sutton, J. Bacteriol. 186:6738-6748, 2004). As part of an ongoing effort to understand mechanisms of DNA polymerase management in E. coli, we have further characterized effects of the dnaN159 allele on polymerase usage. Three of the five E.coli DNA polymerases (II, IV, and V) are regulated as part of the global SOS response. Our results indicate that elevated expression of the dinB-encoded polymerase IV is sufficient to result in conditional lethality of the dnaN159 strain. In contrast, chronically activated RecA protein, expressed from the recA730 allele, is lethal to the dnaN159 strain, and this lethality is suppressed by mutations that either mitigate RecA730 activity (i.e., ΔrecR), or impair the activities of DNA polymerase II or DNA polymerase V (i.e., ΔpolB or ΔumuDC). Thus, we have identified distinct genetic requirements whereby each of the three different SOS-regulated DNA polymerases are able to confer lethality upon the dnaN159 strain, suggesting the presence of multiple mechanisms by which the actions of the cell's different DNA polymerases are managed in vivo.


2005 ◽  
Vol 58 (1) ◽  
pp. 61-70 ◽  
Author(s):  
Magdalena Banach-Orlowska ◽  
Iwona J. Fijalkowska ◽  
Roel M. Schaaper ◽  
Piotr Jonczyk

Sign in / Sign up

Export Citation Format

Share Document