Energy Surfaces
Recently Published Documents





Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 84
Nikolai A. Zarkevich ◽  
Duane D. Johnson

Solids with dimpled potential-energy surfaces are ubiquitous in nature and, typically, exhibit structural (elastic or phonon) instabilities. Dimpled potentials are not harmonic; thus, the conventional quasiharmonic approximation at finite temperatures fails to describe anharmonic vibrations in such solids. At sufficiently high temperatures, their crystal structure is stabilized by entropy; in this phase, a diffraction pattern of a periodic crystal is combined with vibrational properties of a phonon glass. As temperature is lowered, the solid undergoes a symmetry-breaking transition and transforms into a lower-symmetry phase with lower lattice entropy. Here, we identify specific features in the potential-energy surface that lead to such polymorphic behavior; we establish reliable estimates for the relative energies and temperatures associated with the anharmonic vibrations and the solid–solid symmetry-breaking phase transitions. We show that computational phonon methods can be applied to address anharmonic vibrations in a polymorphic solid at fixed temperature. To illustrate the ubiquity of this class of materials, we present a range of examples (elemental metals, a shape-memory alloy, and a layered charge-density-wave system); we show that our theoretical predictions compare well with known experimental data.

Sergei Manzhos ◽  
Eita Sasaki ◽  
Manabu Ihara

Abstract We show that Gaussian process regression (GPR) allows representing multivariate functions with low-dimensional terms via kernel design. When using a kernel built with HDMR (High-dimensional model representation), one obtains a similar type of representation as the previously proposed HDMR-GPR scheme while being faster and simpler to use. We tested the approach on cases where highly accurate machine learning is required from sparse data by fitting potential energy surfaces and kinetic energy densities.

Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 97
Caroline Desgranges ◽  
Jerome Delhommelle

Using molecular simulations, we study the processes of capillary condensation and capillary evaporation in model mesopores. To determine the phase transition pathway, as well as the corresponding free energy profile, we carry out enhanced sampling molecular simulations using entropy as a reaction coordinate to map the onset of order during the condensation process and of disorder during the evaporation process. The structural analysis shows the role played by intermediate states, characterized by the onset of capillary liquid bridges and bubbles. We also analyze the dependence of the free energy barrier on the pore width. Furthermore, we propose a method to build a machine learning model for the prediction of the free energy surfaces underlying capillary phase transition processes in mesopores.

Jinfeng Chen ◽  
Gerhard König

The correct reproduction of conformational substates of amino acids was tested for the CHARMM Drude polarizable force field. This was achieved by evaluating the reorganization energies for all low lying energy minima occurring in all 15 neutral blocked amino acids on a quantum-mechanical (QM) energy surface at the MP2/cc-pVDZ level. The results indicate that the bonded parameters of the N-acetyl (ACE) and N-Methylamide (CT3) blocking groups lead to significant discrepancies. A reparametrization of five bond angles significantly improved the agreement with the QM energy surface. The corrected Drude force field exhibits almost the same average reorganization energies relative to the MP2 energy surface as the AM1 and PM3 semi-empirical methods.

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 76
Junais Habeeb Mokkath ◽  
Mufasila Mumthaz Muhammed ◽  
Ali J. Chamkha

Metadynamics is a popular enhanced sampling method based on the recurrent application of a history-dependent adaptive bias potential that is a function of a selected number of appropriately chosen collective variables. In this work, using metadynamics simulations, we performed a computational study for the diffusion of vacancies on three different Al surfaces [reconstructed Al(100), Al(110), and Al(111) surfaces]. We explored the free energy landscape of diffusion and estimated the barriers associated with this process on each surface. It is found that the surfaces are unique regarding vacancy diffusion. More specically, the reconstructed Al(110) surface presents four metastable states on the free energy surface having sizable and connected passage-ways with an energy barrier of height 0.55 eV. On the other hand, the reconstructed Al(100)/Al(111) surfaces exhibit two/three metastable states, respectively, with an energy barrier of height 0.33 eV. The findings in this study can help to understand surface vacancy diffusion in technologically relevant Al surfaces.

2021 ◽  
Ignacio Fernández Galván ◽  
Anders Brakestad ◽  
Morgane Vacher

Chemiexcitation, the generation of electronic excited states by a thermal reaction initiated on the ground state, is an essential step in chemiluminescence, and it is mediated by the presence of a conical intersection that allows a nonadiabatic transition from ground state to excited state. Conical intersections classified as sloped favor chemiexcitation over ground state relaxation. The chemiexcitation yield of 1,2-dioxetanes is known to increase upon methylation. In this work we explore to which extent this trend can be attributed to changes in the conical intersection topography or accessibility. Since conical intersections are not isolated points, but continuous seams, we locate regions of the conical intersection seams that are close to the configuration space traversed by the molecules as they react on the ground state. We find that conical intersections are energetically and geometrically accessible from the reaction trajectory, and that topographies favorable to chemiexcitation are found in all three molecules studied. Nevertheless, the results suggest that dynamic effects are more important for explaining the different yields than the static features of the potential energy surfaces.

Sign in / Sign up

Export Citation Format

Share Document