damage susceptibility
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 15)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
pp. 30-37
Author(s):  
Christa M. Hoffmann ◽  
Gunnar Kleuker ◽  
André Wauters ◽  
William English ◽  
Martijn Leijdekkers

There is some evidence that sugar beet root tissue strength affects damage susceptibility and storage losses. This study aimed at analyzing the effect of N application and of irrigation on tissue strength of sugar beet varieties, on root composition, and on root tip breakage and storage losses. For this purpose, field trials in six replicates with three sugar beet varieties were carried out with three N doses in The Netherlands and Belgium in 2018 and 2019, alternatively with three irrigation treatments in Sweden in 2018 and 2019. Results show a low impact of N application and irrigation on puncture resistance, tissue firmness and compressive strength of the roots, while varieties differed always stronger and significantly. Cell wall composition (pectin, hemicellulose, cellulose, lignin) did not differ markedly in roots from different environments (sites, years) and varieties, giving no explanation for differences in tissue strength. However, the percentage of cell wall material (AIR, marc) and of dry matter were higher in roots with higher tissue strength. Root tip breakage and sugar losses during storage tended to be lower when root compressive strength of varieties was higher. Hence, root tissue strength could serve as an indirect selection criterion for reduced damage susceptibility and improved storability of sugar beet varieties.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 555
Author(s):  
Thomas C. Goff ◽  
Mark D. Nelson ◽  
Greg C. Liknes ◽  
Tivon E. Feeley ◽  
Scott A. Pugh ◽  
...  

A need to quantify the impact of a particular wind disturbance on forest resources may require rapid yet reliable estimates of damage. We present an approach for combining pre-disturbance forest inventory data with post-disturbance aerial survey data to produce design-based estimates of affected forest area and number and volume of trees damaged or killed. The approach borrows strength from an indirect estimator to adjust estimates from a direct estimator when post-disturbance remeasurement data are unavailable. We demonstrate this approach with an example application from a recent windstorm, known as the 2020 Midwest Derecho, which struck Iowa, USA, and adjacent states on 10–11 August 2020, delivering catastrophic damage to structures, crops, and trees. We estimate that 2.67 million trees and 1.67 million m3 of sound bole volume were damaged or killed on 23 thousand ha of Iowa forest land affected by the 2020 derecho. Damage rates for volume were slightly higher than for number of trees, and damage on live trees due to stem breakage was more prevalent than branch breakage, both likely due to higher damage probability in the dominant canopy of larger trees. The absence of post-storm observations in the damage zone limited direct estimation of storm impacts. Further analysis of forest inventory data will improve understanding of tree damage susceptibility under varying levels of storm severity. We recommend approaches for improving estimates, including increasing spatial or temporal extents of reference data used for indirect estimation, and incorporating ancillary satellite image-based products.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maximilian Fichtner ◽  
Stefan Schuster ◽  
Heiko Stark

AbstractAging research is a very popular field of research in which the deterioration or decline of various physiological features is studied. Here we consider the molecular level, which can also have effects on the macroscopic level. The proteinogenic amino acids differ in their susceptibilities to non-enzymatic modification. Some of these modifications can lead to protein damage and thus can affect the form and function of proteins. For this, it is important to know the distribution of amino acids between the protein shell/surface and the core. This was investigated in this study for all known structures of peptides and proteins available in the PDB. As a result, it is shown that the shell contains less susceptible amino acids than the core with the exception of thermophilic organisms. Furthermore, proteins could be classified according to their susceptibility. This can then be used in applications such as phylogeny, aging research, molecular medicine, and synthetic biology.


2020 ◽  
Author(s):  
Kai Chang ◽  
Yanyan Wang ◽  
Chenxia Liu ◽  
Wanlin Na ◽  
Hongxuan Xu ◽  
...  

Abstract Background: Lupus nephritis (LN) has a high incidence in Systemic lupus erythematosus (SLE) patients, but there is a lack of sensitive predictive markers and mechanisms. The purpose of the study is to reveal the association between the CD4+CD8+ double positive T lymphocytes (DPT) and lupus nephritis (LN), and to investigate the immune mechanism of LN. Methods: The study is composed of 395 samples from the General Hospital of Western Theater Command. Collected patients include SLE, lupus nephritis (LN), nephritic syndrome (NS) and nephritis patients. Peripheral blood lymphocyte subsets were performed by the Flow cytometry method. Biochemical measurements were performed in accordance with the recommendations proposed by national center for clinical laboratories.Results: The proportions of DPT cells in LN group were significantly higher than in SLE group (t=4.012, p<0.001), NS group (t=3.240, p=0.001) and nephritis group (t=2.57, p=0.011). In LN group, the risk of kidney damage increased significantly in the DPT cell proportion dependent manner. In cases of high DPT cells proportion, the risk of LN was 5.136 times higher than when the proportion DPT cell was within the normal range. Moreover, hypertriglyceridemia and hyperuricemia were also independent risk factors.Conclusion: The proportion of DPT cells was a potential marker to evaluate LN susceptibility. When assessing the risk of kidney damage during SLE with DPT cell proportion, we can effectively exclude the interference of NS and nephritis.


Author(s):  
Samuel.J. Baldwin ◽  
Josh Sampson ◽  
Christopher.J. Peacock ◽  
Meghan L. Martin ◽  
Samuel P. Veres ◽  
...  

2020 ◽  
Vol 295 (47) ◽  
pp. 15933-15947
Author(s):  
Yu Xu ◽  
Akanksha Manghrani ◽  
Bei Liu ◽  
Honglue Shi ◽  
Uyen Pham ◽  
...  

As the Watson–Crick faces of nucleobases are protected in dsDNA, it is commonly assumed that deleterious alkylation damage to the Watson–Crick faces of nucleobases predominantly occurs when DNA becomes single-stranded during replication and transcription. However, damage to the Watson–Crick faces of nucleobases has been reported in dsDNA in vitro through mechanisms that are not understood. In addition, the extent of protection from methylation damage conferred by dsDNA relative to ssDNA has not been quantified. Watson–Crick base pairs in dsDNA exist in dynamic equilibrium with Hoogsteen base pairs that expose the Watson–Crick faces of purine nucleobases to solvent. Whether this can influence the damage susceptibility of dsDNA remains unknown. Using dot-blot and primer extension assays, we measured the susceptibility of adenine-N1 to methylation by dimethyl sulfate (DMS) when in an A-T Watson–Crick versus Hoogsteen conformation. Relative to unpaired adenines in a bulge, Watson–Crick A-T base pairs in dsDNA only conferred ∼130-fold protection against adenine-N1 methylation, and this protection was reduced to ∼40-fold for A(syn)-T Hoogsteen base pairs embedded in a DNA-drug complex. Our results indicate that Watson–Crick faces of nucleobases are accessible to alkylating agents in canonical dsDNA and that Hoogsteen base pairs increase this accessibility. Given the higher abundance of dsDNA relative to ssDNA, these results suggest that dsDNA could be a substantial source of cytotoxic damage. The work establishes DMS probing as a method for characterizing A(syn)-T Hoogsteen base pairs in vitro and also lays the foundation for a sequencing approach to map A(syn)-T Hoogsteen and unpaired adenines genome-wide in vivo.


2020 ◽  
Vol 173 ◽  
pp. 105409
Author(s):  
Weizu Wang ◽  
Shuangming Zhang ◽  
Han Fu ◽  
Huazhong Lu ◽  
Zhou Yang

Author(s):  
Yu Xu ◽  
Akanksha Manghrani ◽  
Bei Liu ◽  
Honglue Shi ◽  
Uyen Pham ◽  
...  

AbstractAs the Watson-Crick faces of nucleobases are protected in double-stranded DNA (dsDNA), it is commonly assumed that deleterious alkylation damage to the Watson-Crick faces of nucleobases predominantly occurs when DNA becomes single-stranded during replication and transcription. However, damage to the Watson-Crick faces of nucleobases has been reported in dsDNA in vitro through mechanisms that are not understood. In addition, the extent of protection from methylation damage conferred by dsDNA relative to single-stranded DNA (ssDNA) has not been quantified. Watson-Crick base-pairs in dsDNA exist in dynamic equilibrium with Hoogsteen base-pairs that expose the Watson-Crick faces of purine nucleobases to solvent. Whether this can influence the damage susceptibility of dsDNA remains unknown. Using dot-blot and primer extension assays, we measured the susceptibility of adenine-N1 to methylation by dimethyl sulfate (DMS) when in an A-T Watson-Crick versus Hoogsteen conformation. Relative to unpaired adenines in a bulge, Watson-Crick A-T base-pairs in dsDNA only conferred ~130-fold protection against adenine-N1 methylation and this protection was reduced to ~40-fold for A(syn)-T Hoogsteen base-pairs embedded in a DNA-drug complex. Our results indicate that Watson-Crick faces of nucleobases are accessible to alkylating agents in canonical dsDNA and that Hoogsteen base-pairs increase this accessibility. Given the higher abundance of dsDNA relative to ssDNA, these results suggest that dsDNA could be a substantial source of cytotoxic damage. The work establishes DMS probing as a method for characterizing A(syn)-T Hoogsteen base pairs in vitro and also lays the foundation for a sequencing approach to map A(syn)-T Hoogsteen and unpaired adenines genome-wide in vivo.


2020 ◽  
Author(s):  
Maximilian Fichtner ◽  
Stefan Schuster ◽  
Heiko Stark

AbstractAging research is a very popular field of research in which the gradual transformation of functional states into dysfunctional states are studied. Here we only consider the molecular level, which can also have effects on the macroscopic level. It is known that the proteinogenic amino acids differ in their modification susceptibilities and this can affect the function of proteins. For this it is important to know the distribution of amino acids between the protein surface/shell and the core. This was investigated in this study for all known structural data of peptides and proteins. As a result it is shown that the surface contains less susceptible amino acids than the core with the exception of thermophilic organisms. Furthermore, proteins could be classified according to their susceptibility. This can then be used in applications such as phylogeny, aging research, molecular medicine and synthetic biology.


Biosystems ◽  
2020 ◽  
Vol 187 ◽  
pp. 104035 ◽  
Author(s):  
Maximilian Fichtner ◽  
Stefan Schuster ◽  
Heiko Stark

Sign in / Sign up

Export Citation Format

Share Document