reduced density
Recently Published Documents


TOTAL DOCUMENTS

1014
(FIVE YEARS 221)

H-INDEX

63
(FIVE YEARS 7)

PLoS Genetics ◽  
2022 ◽  
Vol 18 (1) ◽  
pp. e1009992
Author(s):  
Shivohum Bahuguna ◽  
Magda Atilano ◽  
Marcus Glittenberg ◽  
Dohun Lee ◽  
Srishti Arora ◽  
...  

The gut sets the immune and metabolic parameters for the survival of commensal bacteria. We report that in Drosophila, deficiency in bacterial recognition upstream of Toll/NF-κB signalling resulted in reduced density and diversity of gut bacteria. Translational regulation factor 4E-BP, a transcriptional target of Toll/NF-κB, mediated this host-bacteriome interaction. In healthy flies, Toll activated 4E-BP, which enabled fat catabolism, which resulted in sustaining of the bacteriome. The presence of gut bacteria kept Toll signalling activity thus ensuring the feedback loop of their own preservation. When Toll activity was absent, TOR-mediated suppression of 4E-BP made fat resources inaccessible and this correlated with loss of intestinal bacterial density. This could be overcome by genetic or pharmacological inhibition of TOR, which restored bacterial density. Our results give insights into how an animal integrates immune sensing and metabolism to maintain indigenous bacteria in a healthy gut.


2022 ◽  
Vol 2022 (1) ◽  
pp. 013103
Author(s):  
Ramanjit Sohal ◽  
Laimei Nie ◽  
Xiao-Qi Sun ◽  
Eduardo Fradkin

Abstract We investigate the thermalization of Sachdev–Ye–Kitaev (SYK) models coupled via random interactions following quenches from the perspective of entanglement. Previous studies have shown that when a system of two SYK models coupled by random two-body terms is quenched from the thermofield double state with sufficiently low effective temperature, the Rényi entropies do not saturate to the expected thermal values in the large-N limit. Using numerical large-N methods, we first show that the Rényi entropies in a pair SYK models coupled by two-body terms can thermalize, if quenched from a state with sufficiently high effective temperature, and hence exhibit state-dependent thermalization. In contrast, SYK models coupled by single-body terms appear to always thermalize. We provide evidence that the subthermal behavior in the former system is likely a large-N artifact by repeating the quench for finite N and finding that the saturation value of the Rényi entropy extrapolates to the expected thermal value in the N → ∞ limit. Finally, as a finer grained measure of thermalization, we compute the late-time spectral form factor of the reduced density matrix after the quench. While a single SYK dot exhibits perfect agreement with random matrix theory, both the quadratically and quartically coupled SYK models exhibit slight deviations.


Author(s):  
I. F. Yusupova ◽  

The Baltic kerogenic shale – kukersites (О2kk) were considered high-carbon marls which consist of three rock-forming components: organic matter (kerogen), carbonates and terrigenous material. As example used are data of the other high-carbon rocks. It is shown that increased concentrations of organic matter predetermine a number of features of these rocks (reduced density, reduced strength, etc.). The concentrations variability of the organic matter makes conditions the heterogeneity of the intraformational space, the anisotropy of many parameters, as well as the manifestation unevenness of the fluid-generation and evacuation capabilities. It was found that in kukersite shales fluid-generating properties can appear at the earliest stages of catagenesis. The role of areas with the maximum qualities of organic matter in the defluidisation of the shale coals is emphasized: here the more intensive generation of gas-liquid products and increased strength contribute to the earlier formation of drainage microcracks and fluid fractures. The appearance of shrinkage cracks due to catagenic losses of organic matter and usually uneven volume contraction and due to fluidgenerating shale coals is substantiated. The possibility of fluid-generating shale coals losing it lithological individuality during of it defluidisation is found out. Keywords: organic matter; oil shale; kukersite; defluidization; catagenesis; hydrocarbons.


Computation ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 135
Author(s):  
Carmelo Naim ◽  
Claudio Amovilli

In this work, we present a method to build a first order reduced density matrix (1-RDM) of a molecule from variational Quantum Monte Carlo (VMC) computations by means of a given correlated mapping wave function. Such a wave function is modeled on a Generalized Valence Bond plus Complete Active Space Self Configuration Interaction form and fits at best the density resulting from the Slater-Jastrow wave function of VMC. The accuracy of the method proposed has been proved by comparing the resulting kinetic energy with the corresponding VMC value. This 1-RDM is used to analyze the amount of correlation eventually captured in Kohn-Sham calculations performed in an unrestricted approach (UKS-DFT) and with different energy functionals. We performed test calculations on a selected set of molecules that show a significant multireference character. In this analysis, we compared both local and global indicators of nondynamic and dynamic correlation. Moreover, following the natural orbital decomposition of the 1-RDM, we also compared the effective temperatures of the corresponding Fermi-like distributions. Although there is a general agreement between UKS-DFT and VMC, we found the best match with the functional LC-BLYP.


Author(s):  
Miguel Gómez de Santiago ◽  
Peter Gurin ◽  
Szabolcs Varga ◽  
Gerardo Odriozola

Abstract The vapour-liquid coexistence collapse in the reduced temperature, Tr=T/Tc, reduced density, ρr= ρ/ρc, plane is known as a principle of corresponding states, and Noro and Frenkel have extended it for pair potentials of variable range. Here, we provide a theoretical basis supporting this extension and show that it can also be applied to short-range pair potentials where both repulsive and attractive parts can be anisotropic. We observe that the binodals of oblate hard ellipsoids for a given aspect ratio (κ=1/3) with varying short-range square-well interactions collapse into a single master curve in the Δ B*2--ρr plane, where Δ B*2= (B2(T)-B*2(Tc))/v0, B2 is the second virial coefficient, and v0 is the volume of the hard body. This finding is confirmed by both REMC simulation and second virial perturbation theory for varying square-well shells, mimicking uniform, equator, and pole attractions. Our simulation results reveal that the extended law of corresponding states is not related to the local structure of the fluid.


Author(s):  
Sonal Singhal ◽  
John Wrath ◽  
Daniel Rabosky

For many species, both local abundance and regional occupancy are highest near the center of their geographic distributions. One hypothesis for this pattern is that niche suitability declines with increasing distance from a species geographic center, such that populations near range margins are characterized by reduced density and increased patchiness. In these smaller edge populations, genetic drift is more powerful, leading to the loss of genetic diversity. This simple verbal model has been formalized as the central-marginal hypothesis, which predicts that core populations should have greater genetic diversity than edge populations. However, demographic shifts over time can generate a similar pattern. For example, in species with expanding ranges, populations at the range edge experience serial founder effects, creating a gradient of declining genetic diversity from the range core to edge. Testing the central-marginal hypothesis properly thus requires us to consider the confounding role of historical demography. Here, we account for the role of history in testing the central-marginal hypothesis using a genomic dataset of 25 species-level taxa of Australian skink lizards (genus: Ctenotus and Lerista). We found support for the central-marginal hypothesis in 16 of our 25 taxa, of which eight taxa recovered significant support. Unexpectedly, species with the strongest evidence for range expansion were the least likely to follow predictions of the central-marginal hypothesis. The majority of these species had range expansions that originated at the range edge, which led to lower genetic diversity at the range edge compared to the core, contrary to the central-marginal hypothesis.


2021 ◽  
Vol 38 (11) ◽  
pp. 110301
Author(s):  
Xinran Ma ◽  
Z. C. Tu ◽  
Shi-Ju Ran

Human experts cannot efficiently access physical information of a quantum many-body states by simply “reading” its coefficients, but have to reply on the previous knowledge such as order parameters and quantum measurements. We demonstrate that convolutional neural network (CNN) can learn from coefficients of many-body states or reduced density matrices to estimate the physical parameters of the interacting Hamiltonians, such as coupling strengths and magnetic fields, provided the states as the ground states. We propose QubismNet that consists of two main parts: the Qubism map that visualizes the ground states (or the purified reduced density matrices) as images, and a CNN that maps the images to the target physical parameters. By assuming certain constraints on the training set for the sake of balance, QubismNet exhibits impressive powers of learning and generalization on several quantum spin models. While the training samples are restricted to the states from certain ranges of the parameters, QubismNet can accurately estimate the parameters of the states beyond such training regions. For instance, our results show that QubismNet can estimate the magnetic fields near the critical point by learning from the states away from the critical vicinity. Our work provides a data-driven way to infer the Hamiltonians that give the designed ground states, and therefore would benefit the existing and future generations of quantum technologies such as Hamiltonian-based quantum simulations and state tomography.


2021 ◽  
Vol 939 (1) ◽  
pp. 012072
Author(s):  
M Agzamov ◽  
I Radjabov ◽  
D Yuldashev

Abstract Results of researches on definition of influence of density of the raw roller on pubescence of cotton seeds are given in article. The received mathematical model for calculation of contact pressure and movement of the raw roller in the form of a system from six equations with six unknown. The numerical results calculated on the computer. Sizes of shift and contact pressure for the set physic-mechanical and geometrical parameters of a system are determined. It is established that contact pressure significantly depends on elasticity (density) and angular speed of the raw roller. On the basis of the graphic data of contact pressure and contact movement of the raw roller received results of calculations the conclusion that with reduction of density of the raw roller conditions of capture of a short cotton slice worsen. The fact that the contact pressure and movement fluctuate during time is the reason of it, i.e. in the beginning the short cotton slice contacts to a saw, but during fractions of a second this contact is lost, also contact pressure similarly changes. Results of theoretical researches proved increase in a full pubescence of seeds after gin with reduction of density of the raw roller, i.e. one of the reasons of it is deterioration in conditions of capture of short cotton slices a saw - fluctuations of contact pressure and contact movement of the raw roller.


Sign in / Sign up

Export Citation Format

Share Document