photo polymerization
Recently Published Documents


TOTAL DOCUMENTS

268
(FIVE YEARS 50)

H-INDEX

25
(FIVE YEARS 4)

Author(s):  
Braden Sullivan ◽  
David Kalliecharan ◽  
Ivan Kostylev ◽  
Guy Earle ◽  
Jeffrey W. Stansbury ◽  
...  

2021 ◽  
Vol 11 (18) ◽  
pp. 8545
Author(s):  
So-Ree Hwang ◽  
Min-Soo Park

Additive manufacturing, commonly called 3D printing, has been studied extensively because it can be used to fabricate complex structures; however, polymer-based 3D printing has limitations in terms of implementing certain functionalities, so it is limited in the production of conceptual prototypes. As such, polymer-based composites and multi-material 3D printing are being studied as alternatives. In this study, a DLP 3D printer capable of printing multiple composite materials was fabricated using a movable separator and structures with various properties were fabricated by selectively printing two composite materials. After the specimen was fabricated based on the ASTM, the basic mechanical properties of the structure were compared through a 3-point bending test and a ball rebound test. Through this, it was shown that structures with various mechanical properties can be fabricated using the proposed movable-separator-based DLP process. In addition, it was shown that this process can be used to fabricate anisotropic structures, whose properties vary depending on the direction of the force applied to the structure. By fabricating multi-joint grippers with varying levels of flexibility, it was shown that the proposed process can be applied in the fabrication of soft robots as well.


2021 ◽  
pp. 2106754
Author(s):  
Xiaxin Gao ◽  
Jin Li ◽  
Tiantian Li ◽  
Zhilong Su ◽  
Xiaodong Ma ◽  
...  

2021 ◽  
Vol 70 (4) ◽  
Author(s):  
Kamal EBEID ◽  
Ahmed SABET ◽  
Nancy RAFLA ◽  
Nadin AL-HAJ HUSAIN ◽  
Mutlu ÖZCAN

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1877
Author(s):  
Kai-Hung Yang ◽  
Gabriella Lindberg ◽  
Bram Soliman ◽  
Khoon Lim ◽  
Tim Woodfield ◽  
...  

Recent advances highlight the potential of photopolymerizable allylated gelatin (GelAGE) as a versatile hydrogel with highly tailorable properties. It is, however, unknown how different photoinitiating system affects the stability, gelation kinetics and curing depth of GelAGE. In this study, sol fraction, mass swelling ratio, mechanical properties, rheological properties, and curing depth were evaluated as a function of time with three photo-initiating systems: Irgacure 2959 (Ig2959; 320–500 nm), lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP; 320–500 nm), and ruthenium/sodium persulfate (Ru/SPS; 400–500 nm). Results demonstrated that GelAGE precursory solutions mixed with either Ig2959 or LAP remained stable over time while the Ru/SPS system enabled the onset of controllable redox polymerization without irradiation during pre-incubation. Photo-polymerization using the Ru/SPS system was significantly faster (<5 s) compared to both Ig2959 (70 s) and LAP (50 s). Plus, The Ru/SPS system was capable of polymerizing a thick construct (8.88 ± 0.94 mm), while Ig2959 (1.62 ± 0.49 mm) initiated hydrogels displayed poor penetration depth with LAP (7.38 ± 2.13 mm) in between. These results thus support the use of the visible light based Ru/SPS photo-initiator for constructs requiring rapid gelation and a good curing depth while Ig2959 or LAP can be applied for photo-polymerization of GelAGE materials requiring long-term incubation prior to application if UV is not a concern.


2021 ◽  
Vol 22 (11) ◽  
pp. 6095
Author(s):  
Silvia Buonvino ◽  
Matteo Ciocci ◽  
Dror Seliktar ◽  
Sonia Melino

Photo-polymerized hydrogels are ideally suited for stem-cell based tissue regeneration and three dimensional (3D) bioprinting because they can be highly biocompatible, injectable, easy to use, and their mechanical and physical properties can be controlled. However, photo-polymerization involves the use of potentially toxic photo-initiators, exposure to ultraviolet light radiation, formation of free radicals that trigger the cross-linking reaction, and other events whose effects on cells are not yet fully understood. The purpose of this study was to examine the effects of hydrogen sulfide (H2S) in mitigating cellular toxicity of photo-polymerization caused to resident cells during the process of hydrogel formation. H2S, which is the latest discovered member of the gasotransmitter family of gaseous signalling molecules, has a number of established beneficial properties, including cell protection from oxidative damage both directly (by acting as a scavenger molecule) and indirectly (by inducing the expression of anti-oxidant proteins in the cell). Cells were exposed to slow release H2S treatment using pre-conditioning with glutathione-conjugated-garlic extract in order to mitigate toxicity during the photo-polymerization process of hydrogel formation. The protective effects of the H2S treatment were evaluated in both an enzymatic model and a 3D cell culture system using cell viability as a quantitative indicator. The protective effect of H2S treatment of cells is a promising approach to enhance cell survival in tissue engineering applications requiring photo-polymerized hydrogel scaffolds.


Sign in / Sign up

Export Citation Format

Share Document