sexual signaling
Recently Published Documents





2021 ◽  
Vol 109 (1) ◽  
Mateusz Glenszczyk ◽  
David Outomuro ◽  
Matjaž Gregorič ◽  
Simona Kralj-Fišer ◽  
Jutta M. Schneider ◽  

AbstractExamining the role of color in mate choice without testing what colors the study animal is capable of seeing can lead to ill-posed hypotheses and erroneous conclusions. Here, we test the seemingly reasonable assumption that the sexually dimorphic red coloration of the male jumping spider Saitis barbipes is distinguishable, by females, from adjacent black color patches. Using microspectrophotometry, we find clear evidence for photoreceptor classes with maximal sensitivity in the UV (359 nm) and green (526 nm), inconclusive evidence for a photoreceptor maximally sensitive in the blue (451 nm), and no evidence for a red photoreceptor. No colored filters within the lens or retina could be found to shift green sensitivity to red. To quantify and visualize whether females may nevertheless be capable of discriminating red from black color patches, we take multispectral images of males and calculate photoreceptor excitations and color contrasts between color patches. Red patches would be, at best, barely discriminable from black, and not discriminable from a low-luminance green. Some color patches that appear achromatic to human eyes, such as beige and white, strongly absorb UV wavelengths and would appear as brighter “spider-greens” to S. barbipes than the red color patches. Unexpectedly, we discover an iridescent UV patch that contrasts strongly with the UV-absorbing surfaces dominating the rest of the spider. We propose that red and black coloration may serve identical purposes in sexual signaling, functioning to generate strong achromatic contrast with the visual background. The potential functional significance of red coloration outside of sexual signaling is discussed.

Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1079
Eleanor H. Z. Gourevitch ◽  
David M. Shuker

Sexual selection is a major evolutionary process, shaping organisms in terms of success in competition for access to mates and their gametes. The study of sexual selection has provided rich empirical and theoretical literature addressing the ecological and evolutionary causes and consequences of competition for gametes. However, there remains a bias towards individual, species-specific studies, whilst broader, cross-species comparisons looking for wider-ranging patterns in sexual selection remain uncommon. For instance, we are still some ways from understanding why particular kinds of traits tend to evolve under sexual selection, and under what circumstances. Here we consider sexual selection in the Heteroptera, a sub-order of the Hemiptera, or true bugs. The latter is the largest of the hemimetabolous insect orders, whilst the Heteroptera itself comprises some 40,000-plus described species. We focus on four key sexual signaling modes found in the Heteroptera: chemical signals, acoustic signaling via stridulation, vibrational (substrate) signaling, and finally tactile signaling (antennation). We compare how these modes vary across broad habitat types and provide a review of each type of signal. We ask how we might move towards a more predictive theory of sexual selection, that links mechanisms and targets of sexual selection to various ecologies.

2021 ◽  
Vol 4 (1) ◽  
Martin Surbeck ◽  
Cédric Girard-Buttoz ◽  
Liran Samuni ◽  
Christophe Boesch ◽  
Barbara Fruth ◽  

AbstractHere we show that sexual signaling affects patterns of female spatial association differently in chimpanzees and bonobos, indicating its relevance in shaping the respective social systems. Generally, spatial association between females often mirrors patterns and strength of social relationships and cooperation within groups. While testing for proposed differences in female-female associations underlying female coalition formation in the species of the genus Pan, we find only limited evidence for a higher female-female gregariousness in bonobos. While bonobo females exhibited a slightly higher average number of females in their parties, there is neither a species difference in the time females spent alone, nor in the number of female party members in the absence of sexually attractive females. We find that the more frequent presence of maximally tumescent females in bonobos is associated with a significantly stronger increase in the number of female party members, independent of variation in a behavioural proxy for food abundance. This indicates the need to look beyond ecology when explaining species differences in female sociality as it refutes the idea that the higher gregariousness among bonobo females is driven by ecological factors alone and highlights that the temporal distribution of female sexual receptivity is an important factor to consider when studying mammalian sociality.

Gautier Baudry ◽  
Juhani Hopkins ◽  
Phillip C. Watts ◽  
Arja Kaitala

AbstractTheory predicts that because costs constrain female sexual signaling, females are expected to have a low signaling effort that is increased with passing time until mating is secured. This pattern of signaling is expected to result from females balancing the costs associated with a higher than optimal signaling effort and those costs associated with a low signaling effort that increase the likelihood of delayed mating. We tested whether this prediction applies in the common glow-worm Lampyris noctiluca (Coleoptera, Lampyridae), a capital breeding species in which females glow at night to attract males. Contrary to predictions, we found that the duration of female sexual signaling significantly decreased with time. Moreover, when females experienced multiple light/dark cycles within 24 h, both signaling duration and intensity significantly decreased. These results imply that females attempt to signal as much as possible at first, with the decrease in signaling duration and intensity likely being due to female resource depletion. Because in capital breeding females the costs of a delayed mating are likely greater than the costs of sexual signaling, females should mate as soon as possible and thus always invest into signaling as much as possible.

2020 ◽  
Vol 11 (1) ◽  
Samuel V. Hulse ◽  
Julien P. Renoult ◽  
Tamra C. Mendelson

Sign in / Sign up

Export Citation Format

Share Document